Normalized defining polynomial
\( x^{16} - 4 x^{15} + 8 x^{14} - 8 x^{13} + 36 x^{12} - 124 x^{11} + 260 x^{10} - 594 x^{9} + 1345 x^{8} - 1460 x^{7} + 3872 x^{6} - 6382 x^{5} + 17487 x^{4} - 6326 x^{3} + 11745 x^{2} + 10382 x + 37561 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(74743809852316057600000000=2^{24}\cdot 5^{8}\cdot 7^{4}\cdot 41^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} - \frac{3}{7} a^{11} + \frac{3}{7} a^{10} - \frac{3}{7} a^{8} - \frac{1}{7} a^{7} + \frac{3}{7} a^{6} + \frac{2}{7} a^{5} + \frac{1}{7} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a^{2} + \frac{2}{7} a - \frac{1}{7}$, $\frac{1}{7} a^{13} + \frac{1}{7} a^{11} + \frac{2}{7} a^{10} - \frac{3}{7} a^{9} - \frac{3}{7} a^{8} - \frac{3}{7} a^{6} + \frac{1}{7} a^{4} - \frac{1}{7} a^{2} - \frac{2}{7} a - \frac{3}{7}$, $\frac{1}{54887} a^{14} - \frac{2955}{54887} a^{13} - \frac{3076}{54887} a^{12} - \frac{2479}{54887} a^{11} - \frac{6044}{54887} a^{10} - \frac{2267}{7841} a^{9} + \frac{27140}{54887} a^{8} - \frac{5039}{54887} a^{7} - \frac{25825}{54887} a^{6} + \frac{2364}{7841} a^{5} - \frac{20480}{54887} a^{4} - \frac{2863}{7841} a^{3} + \frac{21675}{54887} a^{2} - \frac{21030}{54887} a - \frac{1296}{7841}$, $\frac{1}{11293834374097242381519993223} a^{15} + \frac{74324925835345016430255}{11293834374097242381519993223} a^{14} - \frac{65737785107780789899910667}{11293834374097242381519993223} a^{13} + \frac{181336824042669544181534269}{11293834374097242381519993223} a^{12} - \frac{529654935194743558029983838}{1613404910585320340217141889} a^{11} + \frac{181763153506024047499208520}{1613404910585320340217141889} a^{10} - \frac{5087452493110020755411667294}{11293834374097242381519993223} a^{9} + \frac{98180087658154047202810309}{1613404910585320340217141889} a^{8} + \frac{5190482695775788824869171052}{11293834374097242381519993223} a^{7} - \frac{63541437319738819319967317}{11293834374097242381519993223} a^{6} + \frac{5576879346754457164323632798}{11293834374097242381519993223} a^{5} + \frac{3182038982476329593931583114}{11293834374097242381519993223} a^{4} - \frac{1012855419430769011780494082}{11293834374097242381519993223} a^{3} - \frac{573241688057230819582607808}{1613404910585320340217141889} a^{2} - \frac{1985716837522982506852196204}{11293834374097242381519993223} a + \frac{391630764319262240151915900}{1613404910585320340217141889}$
Class group and class number
$C_{2}\times C_{2}\times C_{18}$, which has order $72$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19190.6159055 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_2^2$ (as 16T128):
| A solvable group of order 64 |
| The 16 conjugacy class representatives for $C_2\wr C_2^2$ |
| Character table for $C_2\wr C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), 4.4.65600.2, 4.4.2624.1, \(\Q(\sqrt{2}, \sqrt{5})\), 8.0.5143040000.4, 8.8.4303360000.1, 8.0.8645450240000.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |