Normalized defining polynomial
\( x^{16} - 5 x^{15} + 36 x^{14} - 124 x^{13} + 599 x^{12} - 1573 x^{11} + 6120 x^{10} - 15786 x^{9} + 50041 x^{8} - 120034 x^{7} + 269934 x^{6} - 479333 x^{5} + 777872 x^{4} - 1087117 x^{3} + 1286409 x^{2} - 1034650 x + 531977 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7443943506504247809229997=43^{5}\cdot 369959^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43, 369959$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{859009260403342140397922685273820128316228303} a^{15} + \frac{87713195128140320218080555084579224518690199}{859009260403342140397922685273820128316228303} a^{14} - \frac{424370576847759802517633074424799905159540073}{859009260403342140397922685273820128316228303} a^{13} - \frac{259841950004382959305411317604597181252208843}{859009260403342140397922685273820128316228303} a^{12} + \frac{316159862083528319594310950283774924085698423}{859009260403342140397922685273820128316228303} a^{11} - \frac{47479961204307837661497886188093708012800470}{859009260403342140397922685273820128316228303} a^{10} + \frac{291040239290706058553088416167506970457351536}{859009260403342140397922685273820128316228303} a^{9} - \frac{259008882606742931754503386127457692282287182}{859009260403342140397922685273820128316228303} a^{8} - \frac{161889171141693634885390019203399042930249909}{859009260403342140397922685273820128316228303} a^{7} + \frac{384002801027101842976047959574609983219336572}{859009260403342140397922685273820128316228303} a^{6} + \frac{183731295176391029165698152801002328682262438}{859009260403342140397922685273820128316228303} a^{5} - \frac{235275750344254488922827286356377511446035280}{859009260403342140397922685273820128316228303} a^{4} - \frac{60762739472353445075589439859458587755909907}{859009260403342140397922685273820128316228303} a^{3} + \frac{383807286612378004119905584598710904829570747}{859009260403342140397922685273820128316228303} a^{2} - \frac{295587161029853012503611570761922103092250066}{859009260403342140397922685273820128316228303} a - \frac{424876992699079513062481536360464649959078693}{859009260403342140397922685273820128316228303}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33758.3848081 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5160960 |
| The 100 conjugacy class representatives for t16n1946 are not computed |
| Character table for t16n1946 is not computed |
Intermediate fields
| 8.4.15908237.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 43 | Data not computed | ||||||
| 369959 | Data not computed | ||||||