Properties

Label 16.0.74256122186...2833.5
Degree $16$
Signature $[0, 8]$
Discriminant $13^{15}\cdot 29^{9}$
Root discriminant $73.61$
Ramified primes $13, 29$
Class number $8$ (GRH)
Class group $[2, 2, 2]$ (GRH)
Galois group 16T1192

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![29925099, -19864067, 22471284, -9197741, 5496296, -1734980, 665522, -260117, 82108, -35737, 9776, -2119, 559, -57, 30, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 30*x^14 - 57*x^13 + 559*x^12 - 2119*x^11 + 9776*x^10 - 35737*x^9 + 82108*x^8 - 260117*x^7 + 665522*x^6 - 1734980*x^5 + 5496296*x^4 - 9197741*x^3 + 22471284*x^2 - 19864067*x + 29925099)
 
gp: K = bnfinit(x^16 - 8*x^15 + 30*x^14 - 57*x^13 + 559*x^12 - 2119*x^11 + 9776*x^10 - 35737*x^9 + 82108*x^8 - 260117*x^7 + 665522*x^6 - 1734980*x^5 + 5496296*x^4 - 9197741*x^3 + 22471284*x^2 - 19864067*x + 29925099, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 30 x^{14} - 57 x^{13} + 559 x^{12} - 2119 x^{11} + 9776 x^{10} - 35737 x^{9} + 82108 x^{8} - 260117 x^{7} + 665522 x^{6} - 1734980 x^{5} + 5496296 x^{4} - 9197741 x^{3} + 22471284 x^{2} - 19864067 x + 29925099 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(742561221860627884726497942833=13^{15}\cdot 29^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $73.61$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{93295206786947966342439203843278965660994668369823647} a^{15} - \frac{11173201358965833484036106705307231414774287421407776}{93295206786947966342439203843278965660994668369823647} a^{14} - \frac{42958998701683436791043186752750812700991525059987264}{93295206786947966342439203843278965660994668369823647} a^{13} - \frac{31226934201034311569642410317966917440105329274844911}{93295206786947966342439203843278965660994668369823647} a^{12} - \frac{10532195472679869113096607969646578324462424624214528}{31098402262315988780813067947759655220331556123274549} a^{11} + \frac{24337134063971340389201842270735249383835532465634389}{93295206786947966342439203843278965660994668369823647} a^{10} - \frac{15242671916453707845290503736995438053374896080830144}{93295206786947966342439203843278965660994668369823647} a^{9} - \frac{13675050226455398560538703833199787609893156871219828}{31098402262315988780813067947759655220331556123274549} a^{8} + \frac{2660717219113444492978550411628240514729335844128529}{93295206786947966342439203843278965660994668369823647} a^{7} - \frac{31111665320797938117567960907282381557307422080298931}{93295206786947966342439203843278965660994668369823647} a^{6} - \frac{10857307318648042000565389522445901739980516704968547}{93295206786947966342439203843278965660994668369823647} a^{5} - \frac{40827496579402831500575684351122745454431739808779721}{93295206786947966342439203843278965660994668369823647} a^{4} + \frac{683881096371930282813702541639989290029033224408550}{93295206786947966342439203843278965660994668369823647} a^{3} - \frac{1261803866662186263330848588577853935197814844772992}{93295206786947966342439203843278965660994668369823647} a^{2} + \frac{16047365195317592170638000670631960863155018360988250}{93295206786947966342439203843278965660994668369823647} a - \frac{10888693527430256003156180516591925706663579637305433}{31098402262315988780813067947759655220331556123274549}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 88800216.7833 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1192:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 88 conjugacy class representatives for t16n1192 are not computed
Character table for t16n1192 is not computed

Intermediate fields

\(\Q(\sqrt{13}) \), 4.0.2197.1, 8.0.1819706993.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ $16$ $16$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ $16$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
13Data not computed
$29$29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.4.3.2$x^{4} - 116$$4$$1$$3$$C_4$$[\ ]_{4}$
29.4.2.2$x^{4} - 29 x^{2} + 2523$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
29.4.2.2$x^{4} - 29 x^{2} + 2523$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$