Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} - 57 x^{13} + 559 x^{12} - 2119 x^{11} + 9776 x^{10} - 35737 x^{9} + 82108 x^{8} - 260117 x^{7} + 665522 x^{6} - 1734980 x^{5} + 5496296 x^{4} - 9197741 x^{3} + 22471284 x^{2} - 19864067 x + 29925099 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(742561221860627884726497942833=13^{15}\cdot 29^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{93295206786947966342439203843278965660994668369823647} a^{15} - \frac{11173201358965833484036106705307231414774287421407776}{93295206786947966342439203843278965660994668369823647} a^{14} - \frac{42958998701683436791043186752750812700991525059987264}{93295206786947966342439203843278965660994668369823647} a^{13} - \frac{31226934201034311569642410317966917440105329274844911}{93295206786947966342439203843278965660994668369823647} a^{12} - \frac{10532195472679869113096607969646578324462424624214528}{31098402262315988780813067947759655220331556123274549} a^{11} + \frac{24337134063971340389201842270735249383835532465634389}{93295206786947966342439203843278965660994668369823647} a^{10} - \frac{15242671916453707845290503736995438053374896080830144}{93295206786947966342439203843278965660994668369823647} a^{9} - \frac{13675050226455398560538703833199787609893156871219828}{31098402262315988780813067947759655220331556123274549} a^{8} + \frac{2660717219113444492978550411628240514729335844128529}{93295206786947966342439203843278965660994668369823647} a^{7} - \frac{31111665320797938117567960907282381557307422080298931}{93295206786947966342439203843278965660994668369823647} a^{6} - \frac{10857307318648042000565389522445901739980516704968547}{93295206786947966342439203843278965660994668369823647} a^{5} - \frac{40827496579402831500575684351122745454431739808779721}{93295206786947966342439203843278965660994668369823647} a^{4} + \frac{683881096371930282813702541639989290029033224408550}{93295206786947966342439203843278965660994668369823647} a^{3} - \frac{1261803866662186263330848588577853935197814844772992}{93295206786947966342439203843278965660994668369823647} a^{2} + \frac{16047365195317592170638000670631960863155018360988250}{93295206786947966342439203843278965660994668369823647} a - \frac{10888693527430256003156180516591925706663579637305433}{31098402262315988780813067947759655220331556123274549}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 88800216.7833 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.2197.1, 8.0.1819706993.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |