Normalized defining polynomial
\( x^{16} - 3 x^{15} + 68 x^{14} - 300 x^{13} + 1885 x^{12} - 7826 x^{11} + 27495 x^{10} - 69069 x^{9} + 139386 x^{8} - 196755 x^{7} + 220597 x^{6} - 150618 x^{5} + 39416 x^{4} + 4289 x^{3} - 21135 x^{2} + 23943 x + 10037 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(742561221860627884726497942833=13^{15}\cdot 29^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{10} + \frac{1}{3} a^{9} - \frac{1}{6} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{6} a^{13} - \frac{1}{2} a^{11} + \frac{1}{3} a^{10} - \frac{1}{6} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{6} a^{5} - \frac{1}{3} a^{2} + \frac{1}{6} a$, $\frac{1}{522} a^{14} - \frac{17}{261} a^{13} - \frac{20}{261} a^{12} - \frac{47}{261} a^{11} - \frac{23}{87} a^{10} + \frac{118}{261} a^{9} + \frac{5}{261} a^{8} + \frac{71}{174} a^{7} - \frac{101}{261} a^{6} - \frac{41}{522} a^{5} + \frac{103}{522} a^{4} - \frac{2}{9} a^{3} - \frac{67}{174} a^{2} + \frac{98}{261} a - \frac{187}{522}$, $\frac{1}{35827430930717509993135474216693624518} a^{15} + \frac{12204926686415954647592617908798374}{17913715465358754996567737108346812259} a^{14} + \frac{39767329741301591572303112197991521}{3980825658968612221459497135188180502} a^{13} + \frac{700715453118333069042040426292870435}{11942476976905836664378491405564541506} a^{12} - \frac{329688084787400126016822812528185357}{1235428652783362413556395662644607742} a^{11} - \frac{3108177359937297517789600053461280379}{35827430930717509993135474216693624518} a^{10} + \frac{16408433620394159548793620610445969551}{35827430930717509993135474216693624518} a^{9} + \frac{3566219454190479921275315622883806184}{17913715465358754996567737108346812259} a^{8} + \frac{14864264491889894763007835803678467221}{35827430930717509993135474216693624518} a^{7} + \frac{9071207344779307705630152593379019439}{35827430930717509993135474216693624518} a^{6} + \frac{5491341739104713488888260523641969547}{11942476976905836664378491405564541506} a^{5} - \frac{191709742001459598386793747636319835}{3980825658968612221459497135188180502} a^{4} - \frac{6349340824173941377071181648799304139}{35827430930717509993135474216693624518} a^{3} - \frac{4841154749531044358566052819726424466}{17913715465358754996567737108346812259} a^{2} + \frac{1087058678861735331903145063717880786}{17913715465358754996567737108346812259} a + \frac{5269625272410163212535955886949729105}{35827430930717509993135474216693624518}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 67906762.1426 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.2197.1, 8.0.1530373581113.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.4.3.1 | $x^{4} - 29$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |