Normalized defining polynomial
\( x^{16} - 3 x^{15} + 68 x^{14} - 66 x^{13} + 715 x^{12} + 806 x^{11} + 1872 x^{10} + 4719 x^{9} + 4680 x^{8} + 14196 x^{7} - 2834 x^{6} - 28119 x^{5} - 4459 x^{4} + 7123 x^{3} + 15330 x^{2} - 19659 x + 10037 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(742561221860627884726497942833=13^{15}\cdot 29^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{12} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{12} a^{9} - \frac{1}{12} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{5}{12} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{5}{12} a - \frac{5}{12}$, $\frac{1}{12} a^{13} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{12} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a + \frac{1}{4}$, $\frac{1}{24} a^{14} - \frac{1}{24} a^{12} - \frac{5}{24} a^{11} + \frac{5}{24} a^{10} + \frac{1}{12} a^{9} + \frac{1}{24} a^{8} - \frac{1}{2} a^{7} + \frac{11}{24} a^{6} + \frac{3}{8} a^{5} + \frac{5}{12} a^{4} + \frac{1}{12} a^{3} - \frac{11}{24} a^{2} - \frac{1}{3} a + \frac{5}{24}$, $\frac{1}{3594479582760013210584768133283762328} a^{15} + \frac{8141497372501975830827348236496200}{449309947845001651323096016660470291} a^{14} - \frac{14177461294954774204176307892356687}{1198159860920004403528256044427920776} a^{13} + \frac{8769495832985778430765333526723509}{399386620306668134509418681475973592} a^{12} - \frac{629852457925159434674541953049340829}{3594479582760013210584768133283762328} a^{11} + \frac{25874215593802858248552013698444452}{449309947845001651323096016660470291} a^{10} + \frac{1200821178515433812710894870153470467}{3594479582760013210584768133283762328} a^{9} + \frac{504124793044699346648188916337337625}{1797239791380006605292384066641881164} a^{8} + \frac{815332986248673384731223951511106339}{3594479582760013210584768133283762328} a^{7} - \frac{1439651596505729555715697253592717503}{3594479582760013210584768133283762328} a^{6} + \frac{72675119671598216966410418331998579}{199693310153334067254709340737986796} a^{5} - \frac{73117621448499978677462003192759257}{299539965230001100882064011106980194} a^{4} - \frac{1428751885354033208594341931235231547}{3594479582760013210584768133283762328} a^{3} - \frac{685868851276402635299432614537286495}{1797239791380006605292384066641881164} a^{2} - \frac{412446926702269199979596838777386357}{3594479582760013210584768133283762328} a + \frac{819760184574704897243422824807355987}{1797239791380006605292384066641881164}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 71251312.8914 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 88 conjugacy class representatives for t16n1192 are not computed |
| Character table for t16n1192 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.2197.1, 8.0.1530373581113.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.3.3 | $x^{4} + 58$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.1 | $x^{4} - 29$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |