Normalized defining polynomial
\( x^{16} - 4 x^{15} + 18 x^{14} - 48 x^{13} + 128 x^{12} - 244 x^{11} + 380 x^{10} - 388 x^{9} + 258 x^{8} + 132 x^{7} - 432 x^{6} + 568 x^{5} + 132 x^{4} - 456 x^{3} + 224 x^{2} + 424 x + 116 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(74163788185600000000=2^{28}\cdot 5^{8}\cdot 29^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{58} a^{14} - \frac{3}{29} a^{13} - \frac{13}{58} a^{11} + \frac{9}{58} a^{10} + \frac{6}{29} a^{9} - \frac{1}{58} a^{8} + \frac{4}{29} a^{7} - \frac{9}{29} a^{6} - \frac{7}{29} a^{5} + \frac{10}{29} a^{4} + \frac{10}{29} a^{3} + \frac{7}{29} a^{2} + \frac{9}{29} a$, $\frac{1}{63191668993639162} a^{15} - \frac{410787080634737}{63191668993639162} a^{14} - \frac{3872220168652483}{63191668993639162} a^{13} - \frac{8622877889919865}{63191668993639162} a^{12} + \frac{104004681703439}{1089511534373089} a^{11} - \frac{855908126475125}{63191668993639162} a^{10} - \frac{3099923831029876}{31595834496819581} a^{9} + \frac{5148423184874285}{31595834496819581} a^{8} + \frac{15647223239379120}{31595834496819581} a^{7} - \frac{2429618195420433}{31595834496819581} a^{6} + \frac{5756352966463618}{31595834496819581} a^{5} - \frac{5718002993126983}{31595834496819581} a^{4} - \frac{962739876852923}{31595834496819581} a^{3} - \frac{15401258990495714}{31595834496819581} a^{2} - \frac{8598312597548670}{31595834496819581} a - \frac{144951045531807}{1089511534373089}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{252896874589}{5175826766618} a^{15} + \frac{1148732357479}{5175826766618} a^{14} - \frac{2582693501169}{2587913383309} a^{13} + \frac{14919660532035}{5175826766618} a^{12} - \frac{20178072825306}{2587913383309} a^{11} + \frac{41712825439867}{2587913383309} a^{10} - \frac{70446749908765}{2587913383309} a^{9} + \frac{87101954435550}{2587913383309} a^{8} - \frac{79945485647769}{2587913383309} a^{7} + \frac{27621870151646}{2587913383309} a^{6} + \frac{38064150419388}{2587913383309} a^{5} - \frac{89709422636924}{2587913383309} a^{4} + \frac{30631903604870}{2587913383309} a^{3} + \frac{41905840921956}{2587913383309} a^{2} - \frac{48383202988664}{2587913383309} a - \frac{27490498625391}{2587913383309} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3332.31310139 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2.C_2\wr C_2^2$ (as 16T394):
| A solvable group of order 128 |
| The 17 conjugacy class representatives for $C_2.C_2\wr C_2^2$ |
| Character table for $C_2.C_2\wr C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-5}) \), 4.2.400.1 x2, 4.0.320.1 x2, \(\Q(i, \sqrt{5})\), 8.0.2560000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |