Normalized defining polynomial
\( x^{16} - 2 x^{15} + 14 x^{14} - 1156 x^{13} - 3665 x^{12} + 28405 x^{11} + 24577 x^{10} + 15125453 x^{9} + 28754614 x^{8} + 534487532 x^{7} + 3912204275 x^{6} - 1279043207 x^{5} + 170125614243 x^{4} - 447528584932 x^{3} + 3007775646743 x^{2} - 5241373973535 x + 2866358222303 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7401566724659785057512888367473350870971393=43^{8}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $477.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{106} a^{14} + \frac{9}{53} a^{13} + \frac{9}{106} a^{12} + \frac{33}{106} a^{11} - \frac{18}{53} a^{10} - \frac{24}{53} a^{9} + \frac{14}{53} a^{8} - \frac{51}{106} a^{7} + \frac{43}{106} a^{6} - \frac{7}{106} a^{5} + \frac{6}{53} a^{4} - \frac{51}{106} a^{3} + \frac{26}{53} a^{2} - \frac{24}{53} a + \frac{31}{106}$, $\frac{1}{16145008487309927797445579473836968719437761751856623576479824757864653592182137124645449898} a^{15} - \frac{11610496627106335137141406721853518031864402485976697864003909655359779088201275279711625}{16145008487309927797445579473836968719437761751856623576479824757864653592182137124645449898} a^{14} + \frac{1756552590285583943572562324290958205897543594834576053036364947227828052075304646675039995}{16145008487309927797445579473836968719437761751856623576479824757864653592182137124645449898} a^{13} + \frac{607305054062099656840891308766482094097442687718950145889129075487676254011686452874423284}{8072504243654963898722789736918484359718880875928311788239912378932326796091068562322724949} a^{12} + \frac{6497479479375036148863537204406533700542207946092895212473071370167623755755073105176702543}{16145008487309927797445579473836968719437761751856623576479824757864653592182137124645449898} a^{11} + \frac{1193189927280147458928975435854870847357936899836250285130174545404392644510043789116784114}{8072504243654963898722789736918484359718880875928311788239912378932326796091068562322724949} a^{10} - \frac{4030830616134977063762477484814464626681287367140896649499768474102855391473505787794643117}{8072504243654963898722789736918484359718880875928311788239912378932326796091068562322724949} a^{9} + \frac{2056598193098961674817724068678594630932907356850162424440320024466422358993534478069674297}{16145008487309927797445579473836968719437761751856623576479824757864653592182137124645449898} a^{8} + \frac{395147100966933267029816523709643025572851432306297663720437725787532008593731985806902777}{8072504243654963898722789736918484359718880875928311788239912378932326796091068562322724949} a^{7} + \frac{3307075818566459429136976285338141408329242240673827973166491745857996168891348834967730926}{8072504243654963898722789736918484359718880875928311788239912378932326796091068562322724949} a^{6} + \frac{30182144191119036886488849563174517258705893796036019361332377928570633801265459247599427}{16145008487309927797445579473836968719437761751856623576479824757864653592182137124645449898} a^{5} - \frac{1218474033646665581833996884254666652686974137163358442993492065637971919471216821067763855}{16145008487309927797445579473836968719437761751856623576479824757864653592182137124645449898} a^{4} - \frac{5205872041325880794896726114276296748771415353407252352718135890911799207059528159046007455}{16145008487309927797445579473836968719437761751856623576479824757864653592182137124645449898} a^{3} + \frac{817096586970872457588823446859515581988638745229503658932104809899061986667006278365950545}{8072504243654963898722789736918484359718880875928311788239912378932326796091068562322724949} a^{2} + \frac{2793172542205639341182632680269975430444630094397769648437575207411193120744959281924264225}{16145008487309927797445579473836968719437761751856623576479824757864653592182137124645449898} a + \frac{5459685909788241090337341558144457656468538024085642864274093935379144931106090754574630883}{16145008487309927797445579473836968719437761751856623576479824757864653592182137124645449898}$
Class group and class number
$C_{8}\times C_{32}$, which has order $256$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2348245511120 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-4171}) \), 4.0.1687532377.1, 8.0.276233255772057202513.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $43$ | 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 97 | Data not computed | ||||||