Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} - 70 x^{13} + 6928 x^{12} - 41022 x^{11} + 20192 x^{10} + 274360 x^{9} + 4546826 x^{8} - 20283562 x^{7} + 50381510 x^{6} - 78549692 x^{5} + 119367930 x^{4} - 132257608 x^{3} + 19413309680 x^{2} - 19356775495 x + 162278712581 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7401566724659785057512888367473350870971393=43^{8}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $477.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{8} - \frac{2}{5} a^{6} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{81561764596051506638099318490841955} a^{14} - \frac{7}{81561764596051506638099318490841955} a^{13} - \frac{3756429537898590911924398679698252}{81561764596051506638099318490841955} a^{12} + \frac{22538577227391545471546392078189603}{81561764596051506638099318490841955} a^{11} - \frac{20353995217720673040346666095112332}{81561764596051506638099318490841955} a^{10} - \frac{23271883899767628316009278417001246}{81561764596051506638099318490841955} a^{9} - \frac{11356923006292547486366515691493033}{81561764596051506638099318490841955} a^{8} + \frac{25174521944825426838035453673855752}{81561764596051506638099318490841955} a^{7} - \frac{1336987447451101552739093272282835}{16312352919210301327619863698168391} a^{6} + \frac{18555075383619475425639417015718588}{81561764596051506638099318490841955} a^{5} + \frac{1949186885665858123406377661171464}{81561764596051506638099318490841955} a^{4} - \frac{11664437882990684968861897861820973}{81561764596051506638099318490841955} a^{3} + \frac{26999650018039037772617277092359058}{81561764596051506638099318490841955} a^{2} - \frac{18128404677615711144040694414754448}{81561764596051506638099318490841955} a - \frac{25249591605016306659356356029687562}{81561764596051506638099318490841955}$, $\frac{1}{841205447434882133198017617403321960648465} a^{15} + \frac{5156854}{841205447434882133198017617403321960648465} a^{14} - \frac{10390803892304429655293374734887000187074}{120172206776411733314002516771903137235495} a^{13} + \frac{4686780931565492619840988467672935170636}{120172206776411733314002516771903137235495} a^{12} + \frac{281979021049287722418090940401514937584747}{841205447434882133198017617403321960648465} a^{11} + \frac{91851924010635761127889375711966656218918}{841205447434882133198017617403321960648465} a^{10} + \frac{272633852318045613747678151516506111165582}{841205447434882133198017617403321960648465} a^{9} - \frac{127306760104064795580691957420159928182609}{841205447434882133198017617403321960648465} a^{8} - \frac{53717161767152790455704318675653844865118}{168241089486976426639603523480664392129693} a^{7} - \frac{17486159964177113187700544582479910334033}{120172206776411733314002516771903137235495} a^{6} + \frac{1788746955113114613752848445719951794694}{5427131918934723439987210434860141681603} a^{5} + \frac{6239970750810725684369882546841693018263}{27135659594673617199936052174300708408015} a^{4} - \frac{54184966035624652152786983397501006668622}{168241089486976426639603523480664392129693} a^{3} - \frac{42306882073444664406066323932740199343638}{841205447434882133198017617403321960648465} a^{2} + \frac{244170213379743153288357780217282027341719}{841205447434882133198017617403321960648465} a - \frac{375145807043416042352772811299499913788313}{841205447434882133198017617403321960648465}$
Class group and class number
$C_{8}\times C_{32}$, which has order $256$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7821277183660 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-4171}) \), 4.0.1687532377.1, 8.0.276233255772057202513.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | $16$ | R | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $43$ | 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 97 | Data not computed | ||||||