Properties

Label 16.0.74003415544...3072.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{16}\cdot 483345053^{3}$
Root discriminant $84.98$
Ramified primes $2, 483345053$
Class number $86004$ (GRH)
Class group $[86004]$ (GRH)
Galois group 16T1946

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![483345053, 0, 567039862, 0, 230965013, 0, 43484289, 0, 4377723, 0, 250588, 0, 8167, 0, 141, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 141*x^14 + 8167*x^12 + 250588*x^10 + 4377723*x^8 + 43484289*x^6 + 230965013*x^4 + 567039862*x^2 + 483345053)
 
gp: K = bnfinit(x^16 + 141*x^14 + 8167*x^12 + 250588*x^10 + 4377723*x^8 + 43484289*x^6 + 230965013*x^4 + 567039862*x^2 + 483345053, 1)
 

Normalized defining polynomial

\( x^{16} + 141 x^{14} + 8167 x^{12} + 250588 x^{10} + 4377723 x^{8} + 43484289 x^{6} + 230965013 x^{4} + 567039862 x^{2} + 483345053 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(7400341554413735321499328643072=2^{16}\cdot 483345053^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $84.98$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 483345053$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11552447734124167057200227} a^{14} - \frac{159325491079789001939088}{502280336266268132921749} a^{12} + \frac{2268766040532249793058634}{11552447734124167057200227} a^{10} - \frac{5508719890469956309502641}{11552447734124167057200227} a^{8} - \frac{2340253464854210743446307}{11552447734124167057200227} a^{6} + \frac{2758618051658066726692984}{11552447734124167057200227} a^{4} - \frac{3927723850121172785848321}{11552447734124167057200227} a^{2} + \frac{3016110902185238745806990}{11552447734124167057200227}$, $\frac{1}{11552447734124167057200227} a^{15} - \frac{159325491079789001939088}{502280336266268132921749} a^{13} + \frac{2268766040532249793058634}{11552447734124167057200227} a^{11} - \frac{5508719890469956309502641}{11552447734124167057200227} a^{9} - \frac{2340253464854210743446307}{11552447734124167057200227} a^{7} + \frac{2758618051658066726692984}{11552447734124167057200227} a^{5} - \frac{3927723850121172785848321}{11552447734124167057200227} a^{3} + \frac{3016110902185238745806990}{11552447734124167057200227} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{86004}$, which has order $86004$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4019.92313624 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1946:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 5160960
The 100 conjugacy class representatives for t16n1946 are not computed
Character table for t16n1946 is not computed

Intermediate fields

8.8.483345053.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 sibling: data not computed
Degree 32 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $16$ $16$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ $16$ ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
483345053Data not computed