Normalized defining polynomial
\( x^{16} - 6 x^{15} + 16 x^{14} - 21 x^{13} + 19 x^{12} - 62 x^{11} + 161 x^{10} - 64 x^{9} - 192 x^{8} - 49 x^{7} + 755 x^{6} - 558 x^{5} + 100 x^{4} - 704 x^{3} + 704 x^{2} + 1024 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(739709068955222437578125=5^{7}\cdot 79^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{13} - \frac{1}{8} a^{12} + \frac{3}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} + \frac{1}{16} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{16} a^{4} + \frac{7}{16} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{512} a^{14} + \frac{7}{256} a^{13} - \frac{5}{64} a^{12} + \frac{107}{512} a^{11} - \frac{17}{512} a^{10} - \frac{1}{256} a^{9} - \frac{55}{512} a^{8} + \frac{5}{128} a^{7} - \frac{113}{512} a^{5} + \frac{31}{512} a^{4} - \frac{57}{256} a^{3} - \frac{13}{128} a^{2} - \frac{3}{32} a - \frac{3}{8}$, $\frac{1}{9480468454368544768} a^{15} + \frac{3780804126037367}{4740234227184272384} a^{14} - \frac{36233809015657229}{1185058556796068096} a^{13} - \frac{1115256888565526933}{9480468454368544768} a^{12} + \frac{2296779311175205007}{9480468454368544768} a^{11} + \frac{903069702064547791}{4740234227184272384} a^{10} - \frac{2095193619546087543}{9480468454368544768} a^{9} - \frac{159044491295440707}{2370117113592136192} a^{8} - \frac{3286445051342699}{18516539949938564} a^{7} + \frac{3740200236907787663}{9480468454368544768} a^{6} + \frac{1575767285173055807}{9480468454368544768} a^{5} + \frac{295744055350604055}{4740234227184272384} a^{4} - \frac{343744134553779613}{2370117113592136192} a^{3} - \frac{278620082575332859}{592529278398034048} a^{2} - \frac{5279876708459587}{148132319599508512} a - \frac{2268604950595815}{4629134987484641}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 124272.711036 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^3\times C_4).D_4$ (as 16T675):
| A solvable group of order 256 |
| The 31 conjugacy class representatives for $(C_2^3\times C_4).D_4$ |
| Character table for $(C_2^3\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-79}) \), 4.0.31205.1, 8.0.4868760125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{6}$ | $16$ | R | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.3 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $79$ | 79.8.4.1 | $x^{8} + 37446 x^{4} - 493039 x^{2} + 350550729$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 79.8.6.2 | $x^{8} + 395 x^{4} + 56169$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |