Normalized defining polynomial
\( x^{16} + 2x^{14} + 2x^{12} + 4x^{6} + 5x^{4} + 4x^{2} + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(7380528100000000\)
\(\medspace = 2^{8}\cdot 5^{8}\cdot 11^{4}\cdot 71^{2}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.81\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}5^{1/2}11^{1/2}71^{1/2}\approx 176.7484087622856$ | ||
Ramified primes: |
\(2\), \(5\), \(11\), \(71\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}+\frac{1}{4}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{11}-\frac{1}{4}a^{10}-\frac{1}{4}a^{8}-\frac{1}{4}a^{6}-\frac{1}{4}a^{5}+\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{11}-\frac{1}{4}a^{8}+\frac{1}{4}a^{7}-\frac{1}{2}a^{6}+\frac{1}{4}a^{5}-\frac{1}{4}a^{2}+\frac{1}{4}a-\frac{1}{4}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a$, $\frac{1}{2}a^{11}+\frac{1}{2}a^{9}-\frac{1}{2}a^{5}+\frac{3}{2}a$, $a^{14}+\frac{1}{4}a^{13}+\frac{3}{2}a^{12}+\frac{1}{2}a^{11}+\frac{5}{4}a^{10}+\frac{1}{4}a^{9}-\frac{1}{2}a^{8}-\frac{1}{4}a^{7}+\frac{1}{2}a^{6}+\frac{1}{4}a^{5}+\frac{15}{4}a^{4}+\frac{5}{4}a^{3}+\frac{13}{4}a^{2}+\frac{5}{4}a+2$, $\frac{3}{2}a^{15}+\frac{5}{2}a^{13}+2a^{11}-a^{9}+\frac{13}{2}a^{5}+\frac{11}{2}a^{3}+\frac{7}{2}a$, $\frac{1}{4}a^{15}+\frac{1}{2}a^{14}+\frac{1}{4}a^{13}+\frac{1}{2}a^{12}+\frac{1}{4}a^{11}+\frac{1}{4}a^{10}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}+\frac{1}{2}a^{6}+\frac{1}{2}a^{5}+\frac{7}{4}a^{4}+\frac{3}{4}a^{3}+a+\frac{3}{4}$, $\frac{1}{2}a^{15}-\frac{3}{4}a^{14}+\frac{1}{2}a^{13}-\frac{5}{4}a^{12}+\frac{1}{4}a^{11}-\frac{3}{4}a^{10}-\frac{1}{4}a^{9}+\frac{1}{2}a^{8}+\frac{1}{2}a^{7}+\frac{7}{4}a^{5}-3a^{4}-\frac{5}{2}a^{2}+\frac{3}{4}a-\frac{5}{4}$, $\frac{3}{2}a^{15}+\frac{5}{2}a^{13}+2a^{11}-a^{9}+\frac{11}{2}a^{5}+\frac{11}{2}a^{3}+\frac{7}{2}a$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 12.3463543204 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 12.3463543204 \cdot 1}{2\cdot\sqrt{7380528100000000}}\cr\approx \mathstrut & 0.174543615828 \end{aligned}\]
Galois group
$C_2^2.C_2^2\wr D_4$ (as 16T1728):
A solvable group of order 8192 |
The 152 conjugacy class representatives for $C_2^2.C_2^2\wr D_4$ |
Character table for $C_2^2.C_2^2\wr D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.275.1, 8.2.5369375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.2.26611481600000000.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x^{2} + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
2.8.8.5 | $x^{8} + 8 x^{7} + 56 x^{6} + 184 x^{5} + 576 x^{4} + 960 x^{3} + 1632 x^{2} + 1120 x + 304$ | $2$ | $4$ | $8$ | $C_8:C_2$ | $[2, 2]^{4}$ | |
\(5\)
| 5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(11\)
| 11.4.0.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
11.4.0.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
11.8.4.1 | $x^{8} + 60 x^{6} + 20 x^{5} + 970 x^{4} - 280 x^{3} + 4664 x^{2} - 5460 x + 2325$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(71\)
| $\Q_{71}$ | $x + 64$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{71}$ | $x + 64$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
71.2.0.1 | $x^{2} + 69 x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
71.2.0.1 | $x^{2} + 69 x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
71.2.0.1 | $x^{2} + 69 x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
71.4.0.1 | $x^{4} + 4 x^{2} + 41 x + 7$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
71.4.2.1 | $x^{4} + 138 x^{3} + 4917 x^{2} + 10764 x + 342127$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |