Normalized defining polynomial
\( x^{16} - 4 x^{15} + 69 x^{14} - 183 x^{13} + 1576 x^{12} - 2725 x^{11} + 15792 x^{10} - 43934 x^{9} + 102969 x^{8} - 201478 x^{7} + 571184 x^{6} - 816623 x^{5} + 559692 x^{4} - 158935 x^{3} + 19651 x^{2} - 14170 x + 5381 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(73802355019427518458620621498921=41^{15}\cdot 83^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{83} a^{14} - \frac{5}{83} a^{13} + \frac{34}{83} a^{12} - \frac{17}{83} a^{11} - \frac{16}{83} a^{10} - \frac{37}{83} a^{9} + \frac{35}{83} a^{8} + \frac{7}{83} a^{7} - \frac{30}{83} a^{6} - \frac{38}{83} a^{5} - \frac{29}{83} a^{4} - \frac{14}{83} a^{3} + \frac{35}{83} a^{2} + \frac{37}{83} a + \frac{37}{83}$, $\frac{1}{5901517308600484229433286572100413734557843} a^{15} + \frac{6707711036574448289779394414013118084395}{5901517308600484229433286572100413734557843} a^{14} - \frac{568245157884673214610913925787570312269832}{5901517308600484229433286572100413734557843} a^{13} + \frac{2753754702855352868324722317853642806223162}{5901517308600484229433286572100413734557843} a^{12} - \frac{78491430974525916129995491471097461999190}{5901517308600484229433286572100413734557843} a^{11} + \frac{1323303762581586079183414451443092114499923}{5901517308600484229433286572100413734557843} a^{10} + \frac{595344940043040556618226928089118706271008}{5901517308600484229433286572100413734557843} a^{9} + \frac{1663948289089977052059523351026477375237842}{5901517308600484229433286572100413734557843} a^{8} + \frac{1330831715473922229359528528341272170535457}{5901517308600484229433286572100413734557843} a^{7} + \frac{1697490920743944359208410615362903402926959}{5901517308600484229433286572100413734557843} a^{6} + \frac{1055467790087459105529431498369623748550652}{5901517308600484229433286572100413734557843} a^{5} + \frac{1998722717873167513207097899490068401541621}{5901517308600484229433286572100413734557843} a^{4} + \frac{2297306137312853343964174523364613595224021}{5901517308600484229433286572100413734557843} a^{3} + \frac{2079390320033092344116283825500041670250259}{5901517308600484229433286572100413734557843} a^{2} + \frac{67292538617470676090523510129520085032371}{5901517308600484229433286572100413734557843} a - \frac{1846033377343154042387647076908868532683713}{5901517308600484229433286572100413734557843}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1206166793.77 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.0.194754273881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{12}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| $83$ | $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{83}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 83.2.1.2 | $x^{2} + 249$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |