Normalized defining polynomial
\( x^{16} - 3 x^{15} - 3 x^{14} - 4 x^{13} + 66 x^{12} + 2 x^{11} - 240 x^{10} - 57 x^{9} + 524 x^{8} + 109 x^{7} - 415 x^{6} - 311 x^{5} + 126 x^{4} + 183 x^{3} + 78 x^{2} + 14 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(73509189062500000000=2^{8}\cdot 5^{14}\cdot 19^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{49095746942951} a^{15} - \frac{12847270199914}{49095746942951} a^{14} + \frac{7261354535360}{49095746942951} a^{13} - \frac{17749533554213}{49095746942951} a^{12} - \frac{7831059844489}{49095746942951} a^{11} + \frac{5589105498230}{49095746942951} a^{10} - \frac{8972825909517}{49095746942951} a^{9} - \frac{21576097370601}{49095746942951} a^{8} + \frac{12665736782151}{49095746942951} a^{7} - \frac{13028706489397}{49095746942951} a^{6} + \frac{8318202300996}{49095746942951} a^{5} + \frac{6054276987850}{49095746942951} a^{4} - \frac{9024964333944}{49095746942951} a^{3} - \frac{6939948573659}{49095746942951} a^{2} - \frac{18670158081185}{49095746942951} a + \frac{14956066088080}{49095746942951}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{28015239468195}{49095746942951} a^{15} + \frac{93213567852754}{49095746942951} a^{14} + \frac{52364982911857}{49095746942951} a^{13} + \frac{96815676902528}{49095746942951} a^{12} - \frac{1874164307085856}{49095746942951} a^{11} + \frac{569133062092902}{49095746942951} a^{10} + \frac{6477887056383491}{49095746942951} a^{9} - \frac{608487649619425}{49095746942951} a^{8} - \frac{14288904712281286}{49095746942951} a^{7} + \frac{1904191061375281}{49095746942951} a^{6} + \frac{10708996976472996}{49095746942951} a^{5} + \frac{4810979884815240}{49095746942951} a^{4} - \frac{5013344172947876}{49095746942951} a^{3} - \frac{3264818594512807}{49095746942951} a^{2} - \frac{1000074647161265}{49095746942951} a - \frac{61815470911378}{49095746942951} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5112.72299701 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times Q_8).C_2^3$ (as 16T226):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $(C_2\times Q_8).C_2^3$ |
| Character table for $(C_2\times Q_8).C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.475.1, \(\Q(\zeta_{5})\), 4.2.2375.1, 8.0.5640625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |