Normalized defining polynomial
\( x^{16} - 7 x^{15} + 24 x^{14} - 54 x^{13} + 84 x^{12} - 73 x^{11} - 34 x^{10} + 243 x^{9} - 457 x^{8} + 486 x^{7} - 136 x^{6} - 584 x^{5} + 1344 x^{4} - 1728 x^{3} + 1536 x^{2} - 896 x + 256 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(73286708086181640625=5^{12}\cdot 547889^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 547889$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{8} a^{10} + \frac{1}{8} a^{9} - \frac{1}{2} a^{8} - \frac{1}{16} a^{7} - \frac{1}{2} a^{6} + \frac{7}{16} a^{5} + \frac{1}{16} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{12} - \frac{1}{16} a^{11} + \frac{1}{16} a^{10} - \frac{1}{4} a^{9} - \frac{1}{32} a^{8} - \frac{1}{4} a^{7} - \frac{9}{32} a^{6} - \frac{15}{32} a^{5} - \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{64} a^{14} - \frac{1}{64} a^{13} - \frac{1}{32} a^{12} + \frac{1}{32} a^{11} - \frac{1}{8} a^{10} - \frac{1}{64} a^{9} - \frac{1}{8} a^{8} + \frac{23}{64} a^{7} - \frac{15}{64} a^{6} - \frac{1}{2} a^{5} + \frac{5}{16} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{128} a^{15} - \frac{1}{128} a^{14} - \frac{1}{64} a^{13} + \frac{1}{64} a^{12} - \frac{1}{16} a^{11} - \frac{1}{128} a^{10} - \frac{1}{16} a^{9} - \frac{41}{128} a^{8} - \frac{15}{128} a^{7} + \frac{1}{4} a^{6} + \frac{5}{32} a^{5} - \frac{1}{2} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{23}{128} a^{15} + \frac{141}{128} a^{14} - \frac{105}{32} a^{13} + \frac{413}{64} a^{12} - \frac{275}{32} a^{11} + \frac{559}{128} a^{10} + \frac{697}{64} a^{9} - \frac{4229}{128} a^{8} + \frac{6235}{128} a^{7} - \frac{2447}{64} a^{6} - \frac{57}{4} a^{5} + \frac{367}{4} a^{4} - \frac{1199}{8} a^{3} + \frac{321}{2} a^{2} - 117 a + 43 \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9516.84702281 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2304 |
| The 40 conjugacy class representatives for t16n1497 |
| Character table for t16n1497 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.8.1712153125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 547889 | Data not computed | ||||||