Normalized defining polynomial
\( x^{16} - 3 x^{15} + 3 x^{14} - 6 x^{13} + 13 x^{12} + 6 x^{11} - 30 x^{10} - 9 x^{9} + 51 x^{8} + \cdots + 1 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(73263654766724409\)
\(\medspace = 3^{12}\cdot 13^{10}\)
|
| |
| Root discriminant: | \(11.33\) |
| |
| Galois root discriminant: | $3^{3/4}13^{3/4}\approx 15.606246247497747$ | ||
| Ramified primes: |
\(3\), \(13\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2\times C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-3}, \sqrt{13})\) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{7}a^{13}-\frac{1}{7}a^{11}-\frac{3}{7}a^{10}+\frac{1}{7}a^{9}+\frac{1}{7}a^{8}+\frac{1}{7}a^{5}+\frac{1}{7}a^{4}-\frac{3}{7}a^{3}-\frac{1}{7}a^{2}+\frac{1}{7}$, $\frac{1}{161}a^{14}+\frac{6}{161}a^{13}-\frac{36}{161}a^{12}-\frac{37}{161}a^{11}-\frac{31}{161}a^{10}+\frac{9}{23}a^{9}+\frac{62}{161}a^{8}+\frac{7}{23}a^{7}-\frac{76}{161}a^{6}+\frac{9}{23}a^{5}+\frac{38}{161}a^{4}+\frac{9}{161}a^{3}-\frac{13}{161}a^{2}+\frac{29}{161}a-\frac{22}{161}$, $\frac{1}{161}a^{15}-\frac{3}{161}a^{13}+\frac{18}{161}a^{12}-\frac{39}{161}a^{11}+\frac{6}{23}a^{10}+\frac{75}{161}a^{9}+\frac{68}{161}a^{8}-\frac{48}{161}a^{7}+\frac{36}{161}a^{6}+\frac{51}{161}a^{5}+\frac{11}{161}a^{4}+\frac{48}{161}a^{3}+\frac{38}{161}a^{2}-\frac{5}{23}a+\frac{40}{161}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -\frac{30}{23} a^{15} + 3 a^{14} - \frac{48}{23} a^{13} + \frac{173}{23} a^{12} - \frac{325}{23} a^{11} - \frac{294}{23} a^{10} + \frac{487}{23} a^{9} + \frac{812}{23} a^{8} - \frac{998}{23} a^{7} - \frac{528}{23} a^{6} + \frac{563}{23} a^{5} + \frac{406}{23} a^{4} - \frac{382}{23} a^{3} + \frac{33}{23} a^{2} - \frac{77}{23} a + \frac{65}{23} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{42}{23}a^{15}-\frac{808}{161}a^{14}+\frac{687}{161}a^{13}-\frac{1684}{161}a^{12}+\frac{3641}{161}a^{11}+\frac{2367}{161}a^{10}-\frac{7625}{161}a^{9}-\frac{5494}{161}a^{8}+\frac{1873}{23}a^{7}+\frac{2762}{161}a^{6}-\frac{8080}{161}a^{5}-\frac{2699}{161}a^{4}+\frac{527}{23}a^{3}+\frac{125}{161}a^{2}+\frac{571}{161}a-\frac{594}{161}$, $\frac{94}{161}a^{15}-\frac{16}{7}a^{14}+\frac{431}{161}a^{13}-\frac{677}{161}a^{12}+\frac{1877}{161}a^{11}-\frac{330}{161}a^{10}-\frac{3553}{161}a^{9}-\frac{158}{23}a^{8}+\frac{7402}{161}a^{7}-\frac{687}{161}a^{6}-\frac{4843}{161}a^{5}-\frac{691}{161}a^{4}+\frac{2741}{161}a^{3}-\frac{683}{161}a^{2}+\frac{528}{161}a-\frac{51}{23}$, $\frac{74}{161}a^{15}-\frac{195}{161}a^{14}+\frac{80}{161}a^{13}-\frac{181}{161}a^{12}+\frac{603}{161}a^{11}+\frac{1195}{161}a^{10}-\frac{2848}{161}a^{9}-\frac{269}{23}a^{8}+\frac{5408}{161}a^{7}+\frac{740}{161}a^{6}-\frac{4463}{161}a^{5}-\frac{19}{23}a^{4}+\frac{1889}{161}a^{3}-\frac{311}{161}a^{2}+\frac{288}{161}a-\frac{42}{23}$, $\frac{54}{161}a^{15}-\frac{187}{161}a^{14}+\frac{40}{23}a^{13}-\frac{507}{161}a^{12}+\frac{995}{161}a^{11}-\frac{330}{161}a^{10}-\frac{191}{23}a^{9}+\frac{565}{161}a^{8}+\frac{2091}{161}a^{7}-\frac{153}{23}a^{6}-\frac{1184}{161}a^{5}+\frac{43}{161}a^{4}+\frac{1047}{161}a^{3}+\frac{26}{23}a^{2}-\frac{229}{161}a-\frac{51}{161}$, $\frac{191}{161}a^{15}-\frac{20}{7}a^{14}+\frac{232}{161}a^{13}-\frac{771}{161}a^{12}+\frac{237}{23}a^{11}+\frac{2893}{161}a^{10}-\frac{5455}{161}a^{9}-\frac{4400}{161}a^{8}+\frac{8220}{161}a^{7}+\frac{2874}{161}a^{6}-\frac{5048}{161}a^{5}-\frac{1027}{161}a^{4}+\frac{934}{161}a^{3}+\frac{174}{161}a^{2}+\frac{744}{161}a-\frac{410}{161}$, $\frac{93}{161}a^{15}-\frac{82}{161}a^{14}-\frac{265}{161}a^{13}-\frac{43}{161}a^{12}+\frac{4}{23}a^{11}+\frac{2837}{161}a^{10}-\frac{1066}{161}a^{9}-\frac{6304}{161}a^{8}+\frac{3271}{161}a^{7}+\frac{6038}{161}a^{6}-\frac{3137}{161}a^{5}-\frac{118}{7}a^{4}+\frac{68}{7}a^{3}-\frac{4}{7}a^{2}+\frac{324}{161}a-\frac{88}{161}$, $\frac{113}{161}a^{15}-\frac{555}{161}a^{14}+\frac{110}{23}a^{13}-\frac{848}{161}a^{12}+\frac{2512}{161}a^{11}-\frac{1026}{161}a^{10}-\frac{6756}{161}a^{9}+\frac{116}{7}a^{8}+\frac{11656}{161}a^{7}-\frac{5755}{161}a^{6}-\frac{8341}{161}a^{5}+\frac{2624}{161}a^{4}+\frac{3695}{161}a^{3}-\frac{117}{23}a^{2}+\frac{75}{161}a-\frac{727}{161}$
|
| |
| Regulator: | \( 140.216883217 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 140.216883217 \cdot 1}{6\cdot\sqrt{73263654766724409}}\cr\approx \mathstrut & 0.209721867299 \end{aligned}\]
Galois group
$C_4\wr C_2$ (as 16T42):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-39}) \), 4.2.507.1 x2, 4.0.117.1 x2, \(\Q(\sqrt{-3}, \sqrt{13})\), 8.0.1601613.1, 8.0.270672597.1, 8.0.2313441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 32 |
| Degree 8 siblings: | 8.0.1601613.1, 8.0.270672597.1 |
| Degree 16 sibling: | 16.4.12381557655576425121.1 |
| Minimal sibling: | 8.0.1601613.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/17.2.0.1}{2} }^{8}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{8}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{8}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.2.4.6a1.3 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 67 x + 19$ | $4$ | $2$ | $6$ | $Q_8$ | $$[\ ]_{4}^{2}$$ |
| 3.2.4.6a1.3 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 67 x + 19$ | $4$ | $2$ | $6$ | $Q_8$ | $$[\ ]_{4}^{2}$$ | |
|
\(13\)
| 13.4.2.4a1.2 | $x^{8} + 6 x^{6} + 24 x^{5} + 13 x^{4} + 72 x^{3} + 156 x^{2} + 48 x + 17$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
| 13.2.4.6a1.3 | $x^{8} + 48 x^{7} + 872 x^{6} + 7200 x^{5} + 24216 x^{4} + 14400 x^{3} + 3488 x^{2} + 397 x + 159$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |