Normalized defining polynomial
\( x^{16} + 8 x^{14} - 20 x^{13} + 194 x^{12} + 200 x^{11} + 2992 x^{10} + 1920 x^{9} + 23426 x^{8} + 24320 x^{7} + 225310 x^{6} + 384060 x^{5} + 1509355 x^{4} + 1962800 x^{3} + 4390350 x^{2} + 3039300 x + 4174025 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7314611834454016000000000000=2^{32}\cdot 5^{12}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(680=2^{3}\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{680}(1,·)$, $\chi_{680}(69,·)$, $\chi_{680}(647,·)$, $\chi_{680}(271,·)$, $\chi_{680}(339,·)$, $\chi_{680}(341,·)$, $\chi_{680}(409,·)$, $\chi_{680}(33,·)$, $\chi_{680}(611,·)$, $\chi_{680}(679,·)$, $\chi_{680}(103,·)$, $\chi_{680}(237,·)$, $\chi_{680}(307,·)$, $\chi_{680}(373,·)$, $\chi_{680}(577,·)$, $\chi_{680}(443,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{15} a^{12} - \frac{7}{15} a^{10} - \frac{2}{5} a^{8} - \frac{1}{5} a^{6} - \frac{4}{15} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{15} a^{13} - \frac{7}{15} a^{11} - \frac{2}{5} a^{9} - \frac{1}{5} a^{7} - \frac{4}{15} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{615} a^{14} + \frac{2}{123} a^{13} + \frac{7}{615} a^{12} + \frac{13}{123} a^{11} + \frac{301}{615} a^{10} - \frac{5}{41} a^{9} + \frac{71}{205} a^{8} - \frac{4}{41} a^{7} - \frac{286}{615} a^{6} - \frac{31}{123} a^{5} + \frac{4}{615} a^{4} + \frac{14}{41} a^{3} + \frac{32}{123} a^{2} - \frac{14}{41} a + \frac{52}{123}$, $\frac{1}{8242396832460106396322761351286235} a^{15} + \frac{562488880820051912838088969003}{8242396832460106396322761351286235} a^{14} + \frac{189575431970967378133908079646}{86762071920632698908660645803013} a^{13} - \frac{146969223206344762749048646411021}{8242396832460106396322761351286235} a^{12} + \frac{666721859065994085954591123469583}{1648479366492021279264552270257247} a^{11} - \frac{1126832306430513441925294695144141}{2747465610820035465440920450428745} a^{10} + \frac{101966103637470358840504142629412}{549493122164007093088184090085749} a^{9} + \frac{16709787697795964339768979598308}{144603453201054498181101076338355} a^{8} + \frac{420978286035542178815990134975510}{1648479366492021279264552270257247} a^{7} - \frac{2364606825700835784099769256288882}{8242396832460106396322761351286235} a^{6} + \frac{3431966471173673000736532877437387}{8242396832460106396322761351286235} a^{5} - \frac{159877472906081475990728500177647}{549493122164007093088184090085749} a^{4} - \frac{543137629892857057278072145716448}{1648479366492021279264552270257247} a^{3} - \frac{48333697361214275260802811389673}{549493122164007093088184090085749} a^{2} + \frac{325226872043530014244321753157809}{1648479366492021279264552270257247} a + \frac{44169322816263344061308302322}{2761271970673402477830070804451}$
Class group and class number
$C_{3}\times C_{24}\times C_{24}$, which has order $1728$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7114.135357253273 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $17$ | 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |