Normalized defining polynomial
\( x^{16} - 3 x^{15} + 6 x^{14} - 4 x^{13} - x^{12} + 15 x^{11} - 27 x^{10} + 32 x^{9} - 12 x^{8} - 23 x^{7} + 55 x^{6} - 57 x^{5} + 43 x^{4} - 23 x^{3} + 9 x^{2} - x + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: |
\(731086699811838561\)
\(\medspace = 3^{16}\cdot 19^{8}\)
| sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | \(13.08\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: |
\(3\), \(19\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$\card{ \Aut(K/\Q) }$: | $4$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{56195686}a^{15}-\frac{5048488}{28097843}a^{14}+\frac{1111075}{56195686}a^{13}+\frac{19107259}{56195686}a^{12}+\frac{15673121}{56195686}a^{11}-\frac{9795169}{56195686}a^{10}-\frac{12554447}{56195686}a^{9}-\frac{8559929}{28097843}a^{8}-\frac{983625}{56195686}a^{7}+\frac{1446632}{28097843}a^{6}-\frac{10805966}{28097843}a^{5}-\frac{4099715}{56195686}a^{4}+\frac{7014238}{28097843}a^{3}-\frac{5619997}{28097843}a^{2}-\frac{25527443}{56195686}a+\frac{7866912}{28097843}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: |
$\frac{7934539}{28097843}a^{15}-\frac{36032205}{56195686}a^{14}+\frac{29188960}{28097843}a^{13}-\frac{1849667}{56195686}a^{12}-\frac{52396327}{56195686}a^{11}+\frac{197843763}{56195686}a^{10}-\frac{276757383}{56195686}a^{9}+\frac{192830397}{56195686}a^{8}+\frac{42632706}{28097843}a^{7}-\frac{438318261}{56195686}a^{6}+\frac{278020437}{28097843}a^{5}-\frac{166639012}{28097843}a^{4}+\frac{191243773}{56195686}a^{3}+\frac{12604128}{28097843}a^{2}-\frac{48883008}{28097843}a+\frac{54187467}{56195686}$, $\frac{1439675}{28097843}a^{15}-\frac{1042436}{28097843}a^{14}+\frac{4796478}{28097843}a^{13}+\frac{5238337}{28097843}a^{12}+\frac{2871781}{28097843}a^{11}+\frac{26003980}{28097843}a^{10}+\frac{7394827}{28097843}a^{9}+\frac{31041491}{28097843}a^{8}+\frac{30965325}{28097843}a^{7}-\frac{4886335}{28097843}a^{6}+\frac{44439636}{28097843}a^{5}+\frac{3805798}{28097843}a^{4}+\frac{25713173}{28097843}a^{3}+\frac{2791552}{28097843}a^{2}+\frac{26599057}{28097843}a+\frac{11171576}{28097843}$, $\frac{4121951}{28097843}a^{15}-\frac{12822501}{28097843}a^{14}+\frac{16885383}{28097843}a^{13}+\frac{4184490}{28097843}a^{12}-\frac{44445150}{28097843}a^{11}+\frac{73137660}{28097843}a^{10}-\frac{90684178}{28097843}a^{9}+\frac{11130368}{28097843}a^{8}+\frac{120888211}{28097843}a^{7}-\frac{265121129}{28097843}a^{6}+\frac{212163936}{28097843}a^{5}+\frac{5175839}{28097843}a^{4}-\frac{192553993}{28097843}a^{3}+\frac{165988522}{28097843}a^{2}-\frac{99885883}{28097843}a+\frac{43348017}{28097843}$, $\frac{8124973}{28097843}a^{15}-\frac{19902589}{28097843}a^{14}+\frac{38887720}{28097843}a^{13}-\frac{13881849}{28097843}a^{12}-\frac{10397403}{28097843}a^{11}+\frac{111260698}{28097843}a^{10}-\frac{156722427}{28097843}a^{9}+\frac{184442567}{28097843}a^{8}-\frac{28984792}{28097843}a^{7}-\frac{171779177}{28097843}a^{6}+\frac{319111060}{28097843}a^{5}-\frac{305588939}{28097843}a^{4}+\frac{234144010}{28097843}a^{3}-\frac{139320586}{28097843}a^{2}+\frac{62539061}{28097843}a-\frac{1599563}{28097843}$, $\frac{10661733}{56195686}a^{15}-\frac{26264597}{28097843}a^{14}+\frac{102971233}{56195686}a^{13}-\frac{117173647}{56195686}a^{12}-\frac{17575617}{56195686}a^{11}+\frac{192924721}{56195686}a^{10}-\frac{556524227}{56195686}a^{9}+\frac{308198797}{28097843}a^{8}-\frac{413961979}{56195686}a^{7}-\frac{172922577}{28097843}a^{6}+\frac{525756757}{28097843}a^{5}-\frac{1230722353}{56195686}a^{4}+\frac{455891920}{28097843}a^{3}-\frac{257277301}{28097843}a^{2}+\frac{164996481}{56195686}a-\frac{12056490}{28097843}$, $\frac{7970339}{56195686}a^{15}+\frac{1521107}{28097843}a^{14}-\frac{8969571}{56195686}a^{13}+\frac{67204139}{56195686}a^{12}-\frac{244309}{56195686}a^{11}+\frac{50805557}{56195686}a^{10}+\frac{132444845}{56195686}a^{9}-\frac{67541754}{28097843}a^{8}+\frac{260237729}{56195686}a^{7}+\frac{888297}{28097843}a^{6}-\frac{102301823}{28097843}a^{5}+\frac{380554837}{56195686}a^{4}-\frac{86356302}{28097843}a^{3}+\frac{47161030}{28097843}a^{2}-\frac{48998833}{56195686}a-\frac{10806226}{28097843}$, $\frac{7934539}{28097843}a^{15}-\frac{36032205}{56195686}a^{14}+\frac{29188960}{28097843}a^{13}-\frac{1849667}{56195686}a^{12}-\frac{52396327}{56195686}a^{11}+\frac{197843763}{56195686}a^{10}-\frac{276757383}{56195686}a^{9}+\frac{192830397}{56195686}a^{8}+\frac{42632706}{28097843}a^{7}-\frac{438318261}{56195686}a^{6}+\frac{278020437}{28097843}a^{5}-\frac{166639012}{28097843}a^{4}+\frac{191243773}{56195686}a^{3}+\frac{12604128}{28097843}a^{2}-\frac{48883008}{28097843}a-\frac{2008219}{56195686}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 188.5109795655095 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$\SL(2,3):C_2$ (as 16T60):
A solvable group of order 48 |
The 14 conjugacy class representatives for $\SL(2,3):C_2$ |
Character table for $\SL(2,3):C_2$ |
Intermediate fields
\(\Q(\sqrt{-19}) \), 4.0.29241.1, 8.0.855036081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.12.0.1}{12} }{,}\,{\href{/padicField/2.4.0.1}{4} }$ | R | ${\href{/padicField/5.6.0.1}{6} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.3.0.1}{3} }^{4}{,}\,{\href{/padicField/11.1.0.1}{1} }^{4}$ | ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.4.0.1}{4} }$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/23.3.0.1}{3} }^{4}{,}\,{\href{/padicField/23.1.0.1}{1} }^{4}$ | ${\href{/padicField/29.12.0.1}{12} }{,}\,{\href{/padicField/29.4.0.1}{4} }$ | ${\href{/padicField/31.12.0.1}{12} }{,}\,{\href{/padicField/31.4.0.1}{4} }$ | ${\href{/padicField/37.2.0.1}{2} }^{8}$ | ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.4.0.1}{4} }$ | ${\href{/padicField/43.6.0.1}{6} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{8}$ | ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
3.12.16.14 | $x^{12} + 72 x^{11} - 36 x^{10} + 108 x^{9} - 108 x^{8} + 54 x^{7} + 72 x^{6} - 81 x^{5} - 81 x^{4} - 81 x^{3} + 81 x^{2} - 81$ | $3$ | $4$ | $16$ | $C_{12}$ | $[2]^{4}$ | |
\(19\)
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.19.2t1.a.a | $1$ | $ 19 $ | \(\Q(\sqrt{-19}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
1.9.3t1.a.a | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
1.171.6t1.f.a | $1$ | $ 3^{2} \cdot 19 $ | 6.0.45001899.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.9.3t1.a.b | $1$ | $ 3^{2}$ | \(\Q(\zeta_{9})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
1.171.6t1.f.b | $1$ | $ 3^{2} \cdot 19 $ | 6.0.45001899.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
2.1539.24t21.a.a | $2$ | $ 3^{4} \cdot 19 $ | 16.0.731086699811838561.1 | $\SL(2,3):C_2$ (as 16T60) | $0$ | $0$ | |
2.1539.24t21.a.b | $2$ | $ 3^{4} \cdot 19 $ | 16.0.731086699811838561.1 | $\SL(2,3):C_2$ (as 16T60) | $0$ | $0$ | |
* | 2.171.16t60.a.a | $2$ | $ 3^{2} \cdot 19 $ | 16.0.731086699811838561.1 | $\SL(2,3):C_2$ (as 16T60) | $0$ | $0$ |
* | 2.171.16t60.a.b | $2$ | $ 3^{2} \cdot 19 $ | 16.0.731086699811838561.1 | $\SL(2,3):C_2$ (as 16T60) | $0$ | $0$ |
* | 2.171.16t60.a.c | $2$ | $ 3^{2} \cdot 19 $ | 16.0.731086699811838561.1 | $\SL(2,3):C_2$ (as 16T60) | $0$ | $0$ |
* | 2.171.16t60.a.d | $2$ | $ 3^{2} \cdot 19 $ | 16.0.731086699811838561.1 | $\SL(2,3):C_2$ (as 16T60) | $0$ | $0$ |
* | 3.1539.6t6.a.a | $3$ | $ 3^{4} \cdot 19 $ | 6.4.124659.1 | $A_4\times C_2$ (as 6T6) | $1$ | $1$ |
* | 3.29241.4t4.b.a | $3$ | $ 3^{4} \cdot 19^{2}$ | 4.0.29241.1 | $A_4$ (as 4T4) | $1$ | $-1$ |