Normalized defining polynomial
\( x^{16} - 4 x^{15} + 28 x^{14} + 555 x^{13} + 1002 x^{12} + 30608 x^{11} + 82171 x^{10} + 129865 x^{9} + 14421522 x^{8} + 42000027 x^{7} - 204896052 x^{6} - 2140918182 x^{5} - 129649338 x^{4} + 21789615908 x^{3} + 168484169151 x^{2} + 477508143788 x + 1291248197075 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(728669284860867208184771804455817142281=31^{12}\cdot 41^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $268.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{41} a^{8} - \frac{2}{41} a^{7} + \frac{12}{41} a^{6} - \frac{6}{41} a^{5} + \frac{7}{41} a^{4} + \frac{15}{41} a^{3} - \frac{7}{41} a^{2} - \frac{20}{41} a + \frac{16}{41}$, $\frac{1}{41} a^{9} + \frac{8}{41} a^{7} + \frac{18}{41} a^{6} - \frac{5}{41} a^{5} - \frac{12}{41} a^{4} - \frac{18}{41} a^{3} + \frac{7}{41} a^{2} + \frac{17}{41} a - \frac{9}{41}$, $\frac{1}{41} a^{10} - \frac{7}{41} a^{7} - \frac{19}{41} a^{6} - \frac{5}{41} a^{5} + \frac{8}{41} a^{4} + \frac{10}{41} a^{3} - \frac{9}{41} a^{2} - \frac{13}{41} a - \frac{5}{41}$, $\frac{1}{41} a^{11} + \frac{8}{41} a^{7} - \frac{3}{41} a^{6} + \frac{7}{41} a^{5} + \frac{18}{41} a^{4} + \frac{14}{41} a^{3} + \frac{20}{41} a^{2} + \frac{19}{41} a - \frac{11}{41}$, $\frac{1}{8405} a^{12} - \frac{17}{1681} a^{11} - \frac{83}{8405} a^{10} - \frac{88}{8405} a^{9} - \frac{53}{8405} a^{8} - \frac{4128}{8405} a^{7} + \frac{1573}{8405} a^{6} - \frac{2759}{8405} a^{5} + \frac{2139}{8405} a^{4} - \frac{2438}{8405} a^{3} - \frac{2517}{8405} a^{2} - \frac{3242}{8405} a + \frac{717}{1681}$, $\frac{1}{42025} a^{13} - \frac{1}{42025} a^{12} - \frac{253}{42025} a^{11} - \frac{20}{1681} a^{10} - \frac{13}{8405} a^{9} + \frac{47}{8405} a^{8} + \frac{6}{1025} a^{7} - \frac{4492}{42025} a^{6} + \frac{7568}{42025} a^{5} + \frac{528}{42025} a^{4} + \frac{5686}{42025} a^{3} + \frac{1387}{8405} a^{2} + \frac{13337}{42025} a - \frac{443}{1681}$, $\frac{1}{24164375} a^{14} + \frac{3}{589375} a^{13} + \frac{148}{24164375} a^{12} + \frac{240228}{24164375} a^{11} + \frac{22537}{4832875} a^{10} + \frac{519}{193315} a^{9} - \frac{227014}{24164375} a^{8} - \frac{8930788}{24164375} a^{7} + \frac{217842}{4832875} a^{6} - \frac{192103}{4832875} a^{5} + \frac{11918708}{24164375} a^{4} + \frac{3842624}{24164375} a^{3} - \frac{9069423}{24164375} a^{2} - \frac{1759812}{24164375} a + \frac{221458}{966575}$, $\frac{1}{48135328467892571174400495356020466021541790273233827382899828125} a^{15} - \frac{394489889156131176916031383888604440478768854860593722903}{48135328467892571174400495356020466021541790273233827382899828125} a^{14} - \frac{7527886347350002722995783056720765698281834324610895902342}{1925413138715702846976019814240818640861671610929353095315993125} a^{13} + \frac{388882243331764492740186849197417361960044488805194399410026}{9627065693578514234880099071204093204308358054646765476579965625} a^{12} - \frac{452235893945326060310478268570979176643695260084847010999940868}{48135328467892571174400495356020466021541790273233827382899828125} a^{11} + \frac{83092474040132002411069972276087191581827456573818474774939763}{9627065693578514234880099071204093204308358054646765476579965625} a^{10} - \frac{2104781991223427904343114457199190455468946485890412585915852}{306594448840080071174525448127518891856954078173463868680890625} a^{9} - \frac{585923096687122205197184230733756288557830019524012960117319549}{48135328467892571174400495356020466021541790273233827382899828125} a^{8} + \frac{4485243907553954712063302682106763312611212131202001879878984698}{48135328467892571174400495356020466021541790273233827382899828125} a^{7} - \frac{424401458907256639470766033866415721119611447336710332432965629}{1925413138715702846976019814240818640861671610929353095315993125} a^{6} + \frac{10862169966272848068093876242747442119939908035797985373159328223}{48135328467892571174400495356020466021541790273233827382899828125} a^{5} - \frac{14496129625641127728331544205706582389835044884622678002688249784}{48135328467892571174400495356020466021541790273233827382899828125} a^{4} - \frac{16974220016670031769898898301653244011057973980109007787097219897}{48135328467892571174400495356020466021541790273233827382899828125} a^{3} + \frac{22223107298030028412551610837685403158431740929391480426129304811}{48135328467892571174400495356020466021541790273233827382899828125} a^{2} + \frac{4929944664531228565598823718283868168743863119893240825063742062}{48135328467892571174400495356020466021541790273233827382899828125} a + \frac{8823184325090141128997294563338968386798052326549889231995152}{27118494911488772492619997383673501983967205787737367539661875}$
Class group and class number
$C_{4}\times C_{12}$, which has order $48$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 582788719537 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 4.0.39401.1, 8.0.106995634603721.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | $16$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $31$ | 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $41$ | 41.4.3.3 | $x^{4} + 246$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.3.4 | $x^{4} + 8856$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.8.7.2 | $x^{8} - 1476$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |