Normalized defining polynomial
\( x^{16} + 4 x^{14} - 16 x^{13} + 6 x^{12} - 88 x^{11} + 48 x^{10} - 340 x^{9} + 155 x^{8} - 464 x^{7} + 1712 x^{6} + 4132 x^{5} + 9858 x^{4} + 18096 x^{3} + 19528 x^{2} + 20808 x + 12434 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(727403732765419503616=2^{40}\cdot 17^{4}\cdot 89^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{1513} a^{14} - \frac{737}{1513} a^{13} - \frac{751}{1513} a^{12} - \frac{675}{1513} a^{11} - \frac{677}{1513} a^{10} + \frac{665}{1513} a^{9} - \frac{263}{1513} a^{8} + \frac{251}{1513} a^{7} + \frac{642}{1513} a^{6} + \frac{582}{1513} a^{5} + \frac{636}{1513} a^{4} - \frac{400}{1513} a^{3} + \frac{227}{1513} a^{2} - \frac{729}{1513} a + \frac{660}{1513}$, $\frac{1}{311655991770405772116917} a^{15} + \frac{69666871629391062641}{311655991770405772116917} a^{14} + \frac{112744250556910212528040}{311655991770405772116917} a^{13} - \frac{5831516652352333104279}{16402946935284514321943} a^{12} + \frac{49695607442803167734349}{311655991770405772116917} a^{11} - \frac{7151073643981001926377}{16402946935284514321943} a^{10} - \frac{40836902347960650396336}{311655991770405772116917} a^{9} - \frac{6097295401826758812186}{311655991770405772116917} a^{8} + \frac{25742115151646314064254}{311655991770405772116917} a^{7} + \frac{31554986938089790456919}{311655991770405772116917} a^{6} - \frac{64403833536508792852743}{311655991770405772116917} a^{5} + \frac{56777139926694143954476}{311655991770405772116917} a^{4} - \frac{7353048267858674693024}{311655991770405772116917} a^{3} + \frac{149881680037315604856876}{311655991770405772116917} a^{2} - \frac{115038476563241897235060}{311655991770405772116917} a - \frac{113213382722461855302557}{311655991770405772116917}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2213366133064977712}{1078394435191715474453} a^{15} - \frac{754448864967088132}{1078394435191715474453} a^{14} + \frac{1721210159850544437}{1078394435191715474453} a^{13} + \frac{1102345906908418222}{56757601852195551287} a^{12} + \frac{16289264705939833443}{1078394435191715474453} a^{11} + \frac{2583577533688114232}{56757601852195551287} a^{10} + \frac{99477813865805997648}{1078394435191715474453} a^{9} + \frac{154870265587598325641}{1078394435191715474453} a^{8} + \frac{445727107190810635117}{1078394435191715474453} a^{7} - \frac{1111610723384902140380}{1078394435191715474453} a^{6} - \frac{2002179113749117669977}{1078394435191715474453} a^{5} - \frac{9129765378199379332298}{1078394435191715474453} a^{4} - \frac{14883855877624665234462}{1078394435191715474453} a^{3} - \frac{17225691566802637411719}{1078394435191715474453} a^{2} - \frac{21028799635502701539956}{1078394435191715474453} a - \frac{10462418536230486030719}{1078394435191715474453} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29074.9950544 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T595):
| A solvable group of order 256 |
| The 40 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), 4.4.4352.1, \(\Q(\zeta_{8})\), 4.0.1088.2, 8.0.18939904.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.20.53 | $x^{8} + 4 x^{5} + 2 x^{4} + 2$ | $8$ | $1$ | $20$ | $Q_8:C_2$ | $[2, 3, 3]^{2}$ |
| 2.8.20.53 | $x^{8} + 4 x^{5} + 2 x^{4} + 2$ | $8$ | $1$ | $20$ | $Q_8:C_2$ | $[2, 3, 3]^{2}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $89$ | 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |