Normalized defining polynomial
\( x^{16} + 156 x^{14} + 11594 x^{12} - 24 x^{11} + 531680 x^{10} + 4032 x^{9} + 16317753 x^{8} + 247008 x^{7} + 340542452 x^{6} + 3145200 x^{5} + 4685677056 x^{4} - 43671120 x^{3} + 38637575756 x^{2} - 926997912 x + 145330457809 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7269924201415415149428216006967296=2^{48}\cdot 3^{8}\cdot 89^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $130.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4272=2^{4}\cdot 3\cdot 89\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4272}(1,·)$, $\chi_{4272}(3205,·)$, $\chi_{4272}(1601,·)$, $\chi_{4272}(2315,·)$, $\chi_{4272}(1423,·)$, $\chi_{4272}(533,·)$, $\chi_{4272}(2137,·)$, $\chi_{4272}(3737,·)$, $\chi_{4272}(1247,·)$, $\chi_{4272}(355,·)$, $\chi_{4272}(3559,·)$, $\chi_{4272}(2669,·)$, $\chi_{4272}(1069,·)$, $\chi_{4272}(179,·)$, $\chi_{4272}(3383,·)$, $\chi_{4272}(2491,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{24565388057} a^{14} + \frac{11816024162}{24565388057} a^{13} - \frac{2725339222}{24565388057} a^{12} - \frac{1317399841}{3509341151} a^{11} + \frac{1474672309}{3509341151} a^{10} + \frac{1629233526}{24565388057} a^{9} + \frac{1429038500}{24565388057} a^{8} + \frac{672386829}{3509341151} a^{7} - \frac{6948249013}{24565388057} a^{6} + \frac{4803804401}{24565388057} a^{5} - \frac{11087644161}{24565388057} a^{4} - \frac{3933770251}{24565388057} a^{3} - \frac{7455819885}{24565388057} a^{2} + \frac{8981314045}{24565388057} a + \frac{7209684115}{24565388057}$, $\frac{1}{8482393351005386045295782617512319202572017209} a^{15} + \frac{151973181265872712566683807138010564}{8482393351005386045295782617512319202572017209} a^{14} + \frac{147254648743069214142404850922844841365301027}{8482393351005386045295782617512319202572017209} a^{13} - \frac{87242796155741228588358893074640041396612178}{180476454276710341389271970585368493671745047} a^{12} + \frac{56520357038825324219655792437106707565900390}{1211770478715055149327968945358902743224573887} a^{11} + \frac{715485407226392097109471038162277732924903288}{8482393351005386045295782617512319202572017209} a^{10} + \frac{2187901747351822978656270590974921289372400883}{8482393351005386045295782617512319202572017209} a^{9} - \frac{3299665860771100455550292808816238664810645337}{8482393351005386045295782617512319202572017209} a^{8} + \frac{1189283616216876312638337962897735807539476441}{8482393351005386045295782617512319202572017209} a^{7} + \frac{133628159470760836496388443570345883536831542}{8482393351005386045295782617512319202572017209} a^{6} - \frac{454401116035647972134813089458735845458188185}{8482393351005386045295782617512319202572017209} a^{5} + \frac{332182325231789090465288110166582902034255026}{8482393351005386045295782617512319202572017209} a^{4} - \frac{2233507490729093719869100105417801785681975844}{8482393351005386045295782617512319202572017209} a^{3} - \frac{3999397610190425462691690476033212414336104335}{8482393351005386045295782617512319202572017209} a^{2} - \frac{2689619551123901439836987312779279383230096140}{8482393351005386045295782617512319202572017209} a + \frac{3646312806230009347379965977782715983856355783}{8482393351005386045295782617512319202572017209}$
Class group and class number
$C_{4}\times C_{52}\times C_{6240}$, which has order $1297920$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11964.310642723332 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $89$ | 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |