Normalized defining polynomial
\( x^{16} - 2 x^{15} + 227 x^{14} - 394 x^{13} + 23377 x^{12} - 34694 x^{11} + 1422906 x^{10} - 1763952 x^{9} + 55896239 x^{8} - 55806478 x^{7} + 1449580514 x^{6} - 1097221888 x^{5} + 24220970150 x^{4} - 12405931900 x^{3} + 238353759596 x^{2} - 62226612592 x + 1057852414081 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7239938343280505619539558400000000=2^{24}\cdot 3^{8}\cdot 5^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $130.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2040=2^{3}\cdot 3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2040}(1,·)$, $\chi_{2040}(389,·)$, $\chi_{2040}(961,·)$, $\chi_{2040}(1801,·)$, $\chi_{2040}(749,·)$, $\chi_{2040}(1681,·)$, $\chi_{2040}(149,·)$, $\chi_{2040}(1441,·)$, $\chi_{2040}(869,·)$, $\chi_{2040}(361,·)$, $\chi_{2040}(1709,·)$, $\chi_{2040}(1589,·)$, $\chi_{2040}(841,·)$, $\chi_{2040}(121,·)$, $\chi_{2040}(509,·)$, $\chi_{2040}(1109,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{101} a^{14} + \frac{33}{101} a^{13} + \frac{15}{101} a^{12} - \frac{35}{101} a^{11} + \frac{31}{101} a^{10} - \frac{5}{101} a^{9} - \frac{13}{101} a^{8} + \frac{30}{101} a^{7} + \frac{46}{101} a^{6} - \frac{49}{101} a^{5} - \frac{26}{101} a^{4} + \frac{14}{101} a^{3} + \frac{40}{101} a^{2} + \frac{47}{101} a - \frac{28}{101}$, $\frac{1}{425722237968365333298592525109248082158359701464556719693} a^{15} + \frac{1244774192495044970277102151196831994265025832470400446}{425722237968365333298592525109248082158359701464556719693} a^{14} - \frac{35009090328654848240754401432490228267356530461038277423}{425722237968365333298592525109248082158359701464556719693} a^{13} + \frac{183760152496075612157746290519133391266783559989423867671}{425722237968365333298592525109248082158359701464556719693} a^{12} - \frac{72282030360670736399806941943878078514279145424893614325}{425722237968365333298592525109248082158359701464556719693} a^{11} - \frac{93419210285607085852652936431690729639597167581868487036}{425722237968365333298592525109248082158359701464556719693} a^{10} - \frac{87453160939790859940598961738255881602862656340272219965}{425722237968365333298592525109248082158359701464556719693} a^{9} - \frac{27745164161771350225897658602090096063594338625483253608}{425722237968365333298592525109248082158359701464556719693} a^{8} - \frac{84524763911458486003627904321445347371794086657555809270}{425722237968365333298592525109248082158359701464556719693} a^{7} + \frac{194635844654898470958319439460104375044534052889417306645}{425722237968365333298592525109248082158359701464556719693} a^{6} - \frac{172323445904169715537820966130302126395900640754348372798}{425722237968365333298592525109248082158359701464556719693} a^{5} + \frac{168930939268688217974525968658065967915469427064025698270}{425722237968365333298592525109248082158359701464556719693} a^{4} - \frac{55861259603920152941325641482264276186912956732161438841}{425722237968365333298592525109248082158359701464556719693} a^{3} - \frac{16322776171424895499459378578290387191604944903806225195}{425722237968365333298592525109248082158359701464556719693} a^{2} + \frac{112690761107224638499137675899119322000315226129359709533}{425722237968365333298592525109248082158359701464556719693} a - \frac{49684203175555038042815544342276722861477363268065498821}{425722237968365333298592525109248082158359701464556719693}$
Class group and class number
$C_{8}\times C_{24}\times C_{24672}$, which has order $4737024$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.012213375973 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-510}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{17}, \sqrt{-30})\), 4.4.4913.1, 4.0.70747200.2, 8.0.5005166307840000.133, 8.0.85087827233280000.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |