Normalized defining polynomial
\( x^{16} - 4 x^{15} + 46 x^{12} - 48 x^{11} - 56 x^{10} - 8 x^{9} + 222 x^{8} + 600 x^{7} + 1456 x^{6} + 1680 x^{5} + 1116 x^{4} + 496 x^{3} + 152 x^{2} + 32 x + 4 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(72138957898383360000=2^{44}\cdot 3^{8}\cdot 5^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{22} a^{13} - \frac{1}{11} a^{12} - \frac{1}{11} a^{11} + \frac{5}{22} a^{10} + \frac{2}{11} a^{9} - \frac{1}{22} a^{8} + \frac{2}{11} a^{7} + \frac{3}{11} a^{6} - \frac{1}{11} a^{5} - \frac{5}{11} a^{3} + \frac{3}{11} a^{2} + \frac{4}{11} a - \frac{1}{11}$, $\frac{1}{682} a^{14} - \frac{13}{682} a^{13} - \frac{123}{682} a^{12} + \frac{52}{341} a^{11} + \frac{24}{341} a^{10} - \frac{72}{341} a^{9} + \frac{68}{341} a^{8} - \frac{107}{341} a^{7} - \frac{56}{341} a^{6} + \frac{15}{31} a^{5} - \frac{27}{341} a^{4} + \frac{47}{341} a^{3} + \frac{136}{341} a^{2} - \frac{166}{341} a - \frac{12}{31}$, $\frac{1}{1464485694665818} a^{15} - \frac{148759771119}{1464485694665818} a^{14} + \frac{12340539754417}{732242847332909} a^{13} + \frac{144162822103682}{732242847332909} a^{12} + \frac{66462226387737}{732242847332909} a^{11} + \frac{1380702125645}{133135063151438} a^{10} - \frac{13249686130551}{1464485694665818} a^{9} - \frac{202522428287981}{1464485694665818} a^{8} + \frac{354806316901496}{732242847332909} a^{7} - \frac{108894380883911}{732242847332909} a^{6} + \frac{200319407028427}{732242847332909} a^{5} + \frac{351457771249384}{732242847332909} a^{4} - \frac{360971439227216}{732242847332909} a^{3} + \frac{141208146968898}{732242847332909} a^{2} + \frac{103251108855603}{732242847332909} a + \frac{159528688842379}{732242847332909}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{136195559252195}{732242847332909} a^{15} - \frac{1241107479731121}{1464485694665818} a^{14} + \frac{362755373244241}{732242847332909} a^{13} - \frac{276352247877137}{732242847332909} a^{12} + \frac{6436098038611149}{732242847332909} a^{11} - \frac{20227754775655067}{1464485694665818} a^{10} - \frac{1205042168479599}{732242847332909} a^{9} - \frac{2906648283557577}{1464485694665818} a^{8} + \frac{30244502938618569}{732242847332909} a^{7} + \frac{65118200012232315}{732242847332909} a^{6} + \frac{165820454364918766}{732242847332909} a^{5} + \frac{146168522302533028}{732242847332909} a^{4} + \frac{93459175828995584}{732242847332909} a^{3} + \frac{38344474496936710}{732242847332909} a^{2} + \frac{1011292137876580}{66567531575719} a + \frac{2383102230608707}{732242847332909} \) (order $24$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17129.0836242 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_4:C_2$ (as 16T18):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2 \times (C_4\times C_2):C_2$ |
| Character table for $C_2 \times (C_4\times C_2):C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |