Normalized defining polynomial
\( x^{16} - 8 x^{15} + 36 x^{14} - 108 x^{13} + 244 x^{12} - 436 x^{11} + 636 x^{10} - 780 x^{9} + 831 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(7213895789838336\)
\(\medspace = 2^{40}\cdot 3^{8}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.80\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{5/2}3^{1/2}\approx 9.797958971132712$ | ||
Ramified primes: |
\(2\), \(3\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $16$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13}a^{14}-\frac{2}{13}a^{13}-\frac{3}{13}a^{12}+\frac{6}{13}a^{11}-\frac{3}{13}a^{10}-\frac{5}{13}a^{9}-\frac{2}{13}a^{8}+\frac{6}{13}a^{7}-\frac{2}{13}a^{6}-\frac{5}{13}a^{5}-\frac{3}{13}a^{4}+\frac{6}{13}a^{3}-\frac{3}{13}a^{2}-\frac{2}{13}a+\frac{1}{13}$, $\frac{1}{949}a^{15}-\frac{9}{949}a^{14}-\frac{28}{949}a^{13}+\frac{66}{949}a^{12}+\frac{397}{949}a^{11}-\frac{322}{949}a^{10}+\frac{228}{949}a^{9}+\frac{306}{949}a^{8}-\frac{278}{949}a^{7}+\frac{9}{949}a^{6}-\frac{176}{949}a^{5}+\frac{105}{949}a^{4}+\frac{358}{949}a^{3}+\frac{45}{949}a^{2}+\frac{210}{949}a-\frac{72}{949}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -\frac{305}{73} a^{15} + \frac{30064}{949} a^{14} - \frac{127325}{949} a^{13} + \frac{355890}{949} a^{12} - \frac{743292}{949} a^{11} + \frac{1224316}{949} a^{10} - \frac{1630370}{949} a^{9} + \frac{1827160}{949} a^{8} - \frac{1803130}{949} a^{7} + \frac{1565132}{949} a^{6} - \frac{1135044}{949} a^{5} + \frac{655826}{949} a^{4} - \frac{296365}{949} a^{3} + \frac{99413}{949} a^{2} - \frac{19503}{949} a + \frac{1802}{949} \)
(order $24$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{2718}{949}a^{15}-\frac{20593}{949}a^{14}+\frac{86978}{949}a^{13}-\frac{243136}{949}a^{12}+\frac{508186}{949}a^{11}-\frac{841251}{949}a^{10}+\frac{1126105}{949}a^{9}-\frac{1275218}{949}a^{8}+\frac{1270000}{949}a^{7}-\frac{1112586}{949}a^{6}+\frac{817601}{949}a^{5}-\frac{487315}{949}a^{4}+\frac{229466}{949}a^{3}-\frac{81944}{949}a^{2}+\frac{17367}{949}a-\frac{2027}{949}$, $\frac{3272}{949}a^{15}-\frac{24776}{949}a^{14}+\frac{105922}{949}a^{13}-\frac{300085}{949}a^{12}+\frac{639940}{949}a^{11}-\frac{1079937}{949}a^{10}+\frac{1482805}{949}a^{9}-\frac{1718456}{949}a^{8}+\frac{1748095}{949}a^{7}-\frac{1561879}{949}a^{6}+\frac{1188684}{949}a^{5}-\frac{743775}{949}a^{4}+\frac{371880}{949}a^{3}-\frac{10849}{73}a^{2}+\frac{37201}{949}a-\frac{5999}{949}$, $\frac{2398}{949}a^{15}-\frac{20341}{949}a^{14}+\frac{90755}{949}a^{13}-\frac{267760}{949}a^{12}+\frac{44531}{73}a^{11}-\frac{75816}{73}a^{10}+\frac{1349087}{949}a^{9}-\frac{1540600}{949}a^{8}+\frac{1540584}{949}a^{7}-\frac{1363593}{949}a^{6}+\frac{1015176}{949}a^{5}-\frac{602237}{949}a^{4}+\frac{21423}{73}a^{3}-\frac{97950}{949}a^{2}+\frac{1681}{73}a-\frac{2493}{949}$, $\frac{3871}{949}a^{15}-\frac{30021}{949}a^{14}+\frac{129665}{949}a^{13}-\frac{371073}{949}a^{12}+\frac{794158}{949}a^{11}-\frac{1342530}{949}a^{10}+\frac{1838815}{949}a^{9}-\frac{2118140}{949}a^{8}+\frac{2134767}{949}a^{7}-\frac{1893675}{949}a^{6}+\frac{1423221}{949}a^{5}-\frac{867322}{949}a^{4}+\frac{414480}{949}a^{3}-\frac{146786}{949}a^{2}+\frac{32686}{949}a-\frac{3429}{949}$, $\frac{40}{949}a^{15}-\frac{4010}{949}a^{14}+\frac{24211}{949}a^{13}-\frac{90800}{949}a^{12}+\frac{220791}{949}a^{11}-\frac{420439}{949}a^{10}+\frac{625240}{949}a^{9}-\frac{764334}{949}a^{8}+\frac{61992}{73}a^{7}-\frac{760081}{949}a^{6}+\frac{609080}{949}a^{5}-\frac{401461}{949}a^{4}+\frac{210690}{949}a^{3}-\frac{87844}{949}a^{2}+\frac{24241}{949}a-\frac{5581}{949}$, $\frac{144}{949}a^{15}+\frac{1113}{949}a^{14}-\frac{9799}{949}a^{13}+\frac{44033}{949}a^{12}-\frac{119127}{949}a^{11}+\frac{245340}{949}a^{10}-\frac{30010}{73}a^{9}+\frac{504256}{949}a^{8}-\frac{550375}{949}a^{7}+\frac{534561}{949}a^{6}-\frac{449255}{949}a^{5}+\frac{314420}{949}a^{4}-\frac{172193}{949}a^{3}+\frac{73275}{949}a^{2}-\frac{22028}{949}a+\frac{4378}{949}$, $\frac{343}{949}a^{15}-\frac{580}{73}a^{14}+\frac{42007}{949}a^{13}-\frac{11466}{73}a^{12}+\frac{355244}{949}a^{11}-\frac{661742}{949}a^{10}+\frac{970702}{949}a^{9}-\frac{1168235}{949}a^{8}+\frac{1216018}{949}a^{7}-\frac{1127756}{949}a^{6}+\frac{68390}{73}a^{5}-\frac{43725}{73}a^{4}+\frac{285876}{949}a^{3}-\frac{110709}{949}a^{2}+\frac{26843}{949}a-\frac{4475}{949}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 168.461389974 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 168.461389974 \cdot 1}{24\cdot\sqrt{7213895789838336}}\cr\approx \mathstrut & 0.200744267691 \end{aligned}\]
Galois group
A solvable group of order 16 |
The 10 conjugacy class representatives for $Q_8 : C_2$ |
Character table for $Q_8 : C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.2.0.1}{2} }^{8}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{8}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.2.0.1}{2} }^{8}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{8}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.16.40.1 | $x^{16} - 4 x^{15} + 16 x^{14} + 8 x^{13} - 8 x^{12} + 8 x^{11} + 16 x^{10} + 32 x^{9} + 56 x^{8} - 56 x^{7} + 112 x^{5} + 112 x^{4} + 196$ | $8$ | $2$ | $40$ | $Q_8 : C_2$ | $[2, 3, 3]^{2}$ |
\(3\)
| 3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |