Normalized defining polynomial
\( x^{16} - 8 x^{15} + 36 x^{14} - 108 x^{13} + 244 x^{12} - 436 x^{11} + 636 x^{10} - 780 x^{9} + 831 x^{8} - 780 x^{7} + 636 x^{6} - 436 x^{5} + 244 x^{4} - 108 x^{3} + 36 x^{2} - 8 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7213895789838336=2^{40}\cdot 3^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $9.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} - \frac{2}{13} a^{13} - \frac{3}{13} a^{12} + \frac{6}{13} a^{11} - \frac{3}{13} a^{10} - \frac{5}{13} a^{9} - \frac{2}{13} a^{8} + \frac{6}{13} a^{7} - \frac{2}{13} a^{6} - \frac{5}{13} a^{5} - \frac{3}{13} a^{4} + \frac{6}{13} a^{3} - \frac{3}{13} a^{2} - \frac{2}{13} a + \frac{1}{13}$, $\frac{1}{949} a^{15} - \frac{9}{949} a^{14} - \frac{28}{949} a^{13} + \frac{66}{949} a^{12} + \frac{397}{949} a^{11} - \frac{322}{949} a^{10} + \frac{228}{949} a^{9} + \frac{306}{949} a^{8} - \frac{278}{949} a^{7} + \frac{9}{949} a^{6} - \frac{176}{949} a^{5} + \frac{105}{949} a^{4} + \frac{358}{949} a^{3} + \frac{45}{949} a^{2} + \frac{210}{949} a - \frac{72}{949}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{305}{73} a^{15} + \frac{30064}{949} a^{14} - \frac{127325}{949} a^{13} + \frac{355890}{949} a^{12} - \frac{743292}{949} a^{11} + \frac{1224316}{949} a^{10} - \frac{1630370}{949} a^{9} + \frac{1827160}{949} a^{8} - \frac{1803130}{949} a^{7} + \frac{1565132}{949} a^{6} - \frac{1135044}{949} a^{5} + \frac{655826}{949} a^{4} - \frac{296365}{949} a^{3} + \frac{99413}{949} a^{2} - \frac{19503}{949} a + \frac{1802}{949} \) (order $24$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 168.461389974 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $Q_8 : C_2$ |
| Character table for $Q_8 : C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |