Normalized defining polynomial
\( x^{16} - x^{15} - 14 x^{14} + 51 x^{13} + 374 x^{12} - 1690 x^{11} + 7906 x^{10} - 41501 x^{9} + 212754 x^{8} - 555097 x^{7} + 2681016 x^{6} - 4737977 x^{5} + 22518941 x^{4} + 2748753 x^{3} + 166889104 x^{2} + 120480118 x + 21924773 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7174452138071971572143971681481=23^{12}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{244164801020104952404387566212394405763785030139517235504888391} a^{15} - \frac{36312539870870912057931853138739646788206326875451370440092116}{244164801020104952404387566212394405763785030139517235504888391} a^{14} + \frac{1942114346438364905920633355926662784090881205736231175504889}{8419475897244998358771985041806703647027070004810939155340979} a^{13} + \frac{111293101637550361468533651827034870513645344132905808681448177}{244164801020104952404387566212394405763785030139517235504888391} a^{12} - \frac{93546665043407914876132595162621234561393639046115022577367305}{244164801020104952404387566212394405763785030139517235504888391} a^{11} - \frac{35009035672866499937683228105527693878893193363769832396435940}{244164801020104952404387566212394405763785030139517235504888391} a^{10} + \frac{60326538109969312628027610657330309597876468963160220566791441}{244164801020104952404387566212394405763785030139517235504888391} a^{9} + \frac{77105913360133356307944743556004542584377300969607489836215546}{244164801020104952404387566212394405763785030139517235504888391} a^{8} - \frac{103894469634360621403315812056566133573069190415377161346987263}{244164801020104952404387566212394405763785030139517235504888391} a^{7} + \frac{58535853838143449637051632790796818274646496901704988815130423}{244164801020104952404387566212394405763785030139517235504888391} a^{6} - \frac{20029726095857259832722346251737217771747209973967317804112653}{244164801020104952404387566212394405763785030139517235504888391} a^{5} + \frac{49792687136919173856775568477713243497961174386368733276994958}{244164801020104952404387566212394405763785030139517235504888391} a^{4} - \frac{31615524033498352760392807507990179889975419478982736453869863}{244164801020104952404387566212394405763785030139517235504888391} a^{3} + \frac{88302916899457955154577020516620717044594288082654056819127510}{244164801020104952404387566212394405763785030139517235504888391} a^{2} + \frac{27930312382640255349486292946320581910648059126400588680556173}{244164801020104952404387566212394405763785030139517235504888391} a - \frac{94311859372978290704517830266938116058673275968685507710254276}{244164801020104952404387566212394405763785030139517235504888391}$
Class group and class number
$C_{2}\times C_{12}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26099939.1227 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 4.0.21689.1, 8.0.19286921561.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | $16$ | $16$ | R | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||