Normalized defining polynomial
\( x^{16} - 4 x^{15} - 24 x^{14} + 104 x^{13} + 240 x^{12} - 1170 x^{11} - 1220 x^{10} + 5202 x^{9} + 11672 x^{8} - 5738 x^{7} - 85302 x^{6} - 52280 x^{5} + 288522 x^{4} + 344642 x^{3} - 39434 x^{2} + 310669 x + 1680101 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(71576937566385674072265625=5^{12}\cdot 29^{6}\cdot 149^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{9590569} a^{14} + \frac{92644}{9590569} a^{13} + \frac{3121624}{9590569} a^{12} - \frac{3555664}{9590569} a^{11} + \frac{3427332}{9590569} a^{10} - \frac{2309983}{9590569} a^{9} + \frac{527557}{9590569} a^{8} + \frac{3810986}{9590569} a^{7} - \frac{2881793}{9590569} a^{6} - \frac{972326}{9590569} a^{5} + \frac{2206008}{9590569} a^{4} + \frac{1125526}{9590569} a^{3} - \frac{2943000}{9590569} a^{2} + \frac{4674955}{9590569} a - \frac{3731144}{9590569}$, $\frac{1}{26275282718424729698045030538099985794961} a^{15} + \frac{9283690135110284631960620271823}{2021175593724979207541925426007691214997} a^{14} + \frac{10047671972555781264229710508923073831576}{26275282718424729698045030538099985794961} a^{13} - \frac{5947675668291201801563363293722853878553}{26275282718424729698045030538099985794961} a^{12} - \frac{2380303411076234297519280272536798563380}{26275282718424729698045030538099985794961} a^{11} - \frac{12017601024473626616469446344494739510131}{26275282718424729698045030538099985794961} a^{10} - \frac{6042855705407772457897369670686497028812}{26275282718424729698045030538099985794961} a^{9} - \frac{2989659984913555646434406097691426769616}{26275282718424729698045030538099985794961} a^{8} - \frac{11884628987100451274993399293336523051863}{26275282718424729698045030538099985794961} a^{7} + \frac{11957595313478050388665975953606261927164}{26275282718424729698045030538099985794961} a^{6} + \frac{10739580933784070497926772844278617815211}{26275282718424729698045030538099985794961} a^{5} + \frac{9081851927937231346193073866715752990992}{26275282718424729698045030538099985794961} a^{4} + \frac{9479210284609426278829081491107551591999}{26275282718424729698045030538099985794961} a^{3} - \frac{3288514133006287439259309627305601782347}{26275282718424729698045030538099985794961} a^{2} - \frac{522589010393877709780559509483080746809}{2021175593724979207541925426007691214997} a - \frac{1940641676491945953550981265029058215753}{26275282718424729698045030538099985794961}$
Class group and class number
$C_{2}\times C_{28}$, which has order $56$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29217.4391773 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 44 conjugacy class representatives for t16n1025 |
| Character table for t16n1025 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.0.8460315453125.1, 8.4.56780640625.1, 8.4.78318125.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $29$ | 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 149 | Data not computed | ||||||