Normalized defining polynomial
\( x^{16} - 2 x^{15} + 4 x^{14} - 21 x^{13} - 27 x^{12} - 165 x^{11} + 944 x^{10} + 1930 x^{9} - 2482 x^{8} - 5011 x^{7} + 2662 x^{6} + 2845 x^{5} + 1030 x^{4} - 1167 x^{3} - 326 x^{2} - 29 x + 107 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7133896604786078388958797817=71^{8}\cdot 73^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $71, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{16025} a^{14} - \frac{1444}{16025} a^{13} + \frac{1474}{16025} a^{12} - \frac{6222}{16025} a^{11} + \frac{166}{641} a^{10} - \frac{3924}{16025} a^{9} + \frac{5327}{16025} a^{8} + \frac{7393}{16025} a^{7} + \frac{5256}{16025} a^{6} + \frac{2658}{16025} a^{5} - \frac{3642}{16025} a^{4} - \frac{253}{3205} a^{3} + \frac{1336}{16025} a^{2} - \frac{6884}{16025} a - \frac{7656}{16025}$, $\frac{1}{81234622373830448891525} a^{15} + \frac{915439001032016644}{81234622373830448891525} a^{14} + \frac{7961857077742920760772}{81234622373830448891525} a^{13} - \frac{484764835576020954926}{16246924474766089778305} a^{12} + \frac{37638312604919922732299}{81234622373830448891525} a^{11} - \frac{7706731773215374101949}{81234622373830448891525} a^{10} + \frac{1185510987451042406337}{16246924474766089778305} a^{9} - \frac{18699982319820464835551}{81234622373830448891525} a^{8} + \frac{4573507926580991008422}{16246924474766089778305} a^{7} + \frac{35505850860515899786441}{81234622373830448891525} a^{6} - \frac{34825293376917993601288}{81234622373830448891525} a^{5} + \frac{22167310012632206963234}{81234622373830448891525} a^{4} - \frac{30902548703042641551564}{81234622373830448891525} a^{3} - \frac{32829256445567489156416}{81234622373830448891525} a^{2} - \frac{11517375215974931114763}{81234622373830448891525} a + \frac{38044319630428093152622}{81234622373830448891525}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3343233.44259 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-71}) \), 4.0.367993.1, 8.0.9885575907577.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $16$ | $16$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $71$ | 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $73$ | 73.2.1.2 | $x^{2} + 365$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.4.2.1 | $x^{4} + 1533 x^{2} + 644809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 73.4.2.1 | $x^{4} + 1533 x^{2} + 644809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 73.4.2.1 | $x^{4} + 1533 x^{2} + 644809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |