Normalized defining polynomial
\( x^{16} - 2 x^{15} + 38 x^{14} - 72 x^{13} + 670 x^{12} - 480 x^{11} + 7039 x^{10} + 3597 x^{9} + 43027 x^{8} + 81298 x^{7} + 254629 x^{6} + 796163 x^{5} + 1565210 x^{4} + 2128832 x^{3} + 2066545 x^{2} + 1302809 x + 546239 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(71085478368850138600216861921=37^{4}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{12} + \frac{1}{8} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{1}{8} a^{3} + \frac{3}{8} a - \frac{3}{8}$, $\frac{1}{664} a^{13} + \frac{7}{166} a^{12} + \frac{1}{664} a^{11} - \frac{3}{332} a^{10} - \frac{65}{332} a^{9} - \frac{45}{332} a^{8} + \frac{131}{332} a^{7} + \frac{117}{664} a^{6} + \frac{25}{664} a^{5} - \frac{163}{664} a^{4} - \frac{71}{166} a^{3} + \frac{183}{664} a^{2} + \frac{65}{664} a - \frac{7}{83}$, $\frac{1}{1328} a^{14} - \frac{1}{1328} a^{13} - \frac{4}{83} a^{12} + \frac{297}{1328} a^{11} + \frac{127}{1328} a^{10} + \frac{263}{664} a^{9} + \frac{25}{664} a^{8} + \frac{321}{1328} a^{7} + \frac{225}{664} a^{6} - \frac{473}{1328} a^{5} + \frac{271}{664} a^{4} - \frac{231}{664} a^{3} - \frac{131}{664} a^{2} + \frac{79}{166} a + \frac{379}{1328}$, $\frac{1}{1001713481458537173440484037397344477136} a^{15} - \frac{149359503100940368402951538745417671}{500856740729268586720242018698672238568} a^{14} - \frac{326135896110449539145104598543981269}{1001713481458537173440484037397344477136} a^{13} + \frac{20092403010991395194385531748933872401}{1001713481458537173440484037397344477136} a^{12} + \frac{24567933381065723085898422900268741775}{125214185182317146680060504674668059642} a^{11} + \frac{80961751170704303687765411587451682039}{1001713481458537173440484037397344477136} a^{10} + \frac{20427764900876349193774825425850880607}{62607092591158573340030252337334029821} a^{9} - \frac{206582966180853709197818433139404437797}{1001713481458537173440484037397344477136} a^{8} - \frac{407835910270395437723938466816615331015}{1001713481458537173440484037397344477136} a^{7} + \frac{307119025687881287918203129712092887411}{1001713481458537173440484037397344477136} a^{6} - \frac{61457910573039931760617021397743766447}{1001713481458537173440484037397344477136} a^{5} - \frac{241155547876202187220901236593131947423}{500856740729268586720242018698672238568} a^{4} - \frac{19807851662335894929437442325790093631}{125214185182317146680060504674668059642} a^{3} - \frac{30891220585792591997310479471453766045}{125214185182317146680060504674668059642} a^{2} - \frac{289857414606882339735195643373583809407}{1001713481458537173440484037397344477136} a + \frac{380534266953750364751284079903506628897}{1001713481458537173440484037397344477136}$
Class group and class number
$C_{24}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1905191.05667 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_8$ (as 16T24):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2^2 : C_8$ |
| Character table for $C_2^2 : C_8$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.0.2550077.1, 4.4.68921.1, 4.0.62197.1, 8.0.194754273881.1, 8.8.266618600943089.1, 8.0.6502892705929.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | R | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |