Properties

Label 16.0.71085478368...1921.1
Degree $16$
Signature $[0, 8]$
Discriminant $37^{4}\cdot 41^{14}$
Root discriminant $63.57$
Ramified primes $37, 41$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^4.C_2^3.C_2$ (as 16T565)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![139, 330, 7700, -5481, 57312, -131824, 156795, -124831, 72664, -31779, 11465, -3185, 880, -162, 40, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 + 40*x^14 - 162*x^13 + 880*x^12 - 3185*x^11 + 11465*x^10 - 31779*x^9 + 72664*x^8 - 124831*x^7 + 156795*x^6 - 131824*x^5 + 57312*x^4 - 5481*x^3 + 7700*x^2 + 330*x + 139)
 
gp: K = bnfinit(x^16 - 3*x^15 + 40*x^14 - 162*x^13 + 880*x^12 - 3185*x^11 + 11465*x^10 - 31779*x^9 + 72664*x^8 - 124831*x^7 + 156795*x^6 - 131824*x^5 + 57312*x^4 - 5481*x^3 + 7700*x^2 + 330*x + 139, 1)
 

Normalized defining polynomial

\( x^{16} - 3 x^{15} + 40 x^{14} - 162 x^{13} + 880 x^{12} - 3185 x^{11} + 11465 x^{10} - 31779 x^{9} + 72664 x^{8} - 124831 x^{7} + 156795 x^{6} - 131824 x^{5} + 57312 x^{4} - 5481 x^{3} + 7700 x^{2} + 330 x + 139 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(71085478368850138600216861921=37^{4}\cdot 41^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $63.57$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $37, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{532889796006170719172023794042038} a^{15} - \frac{63164767395046658791256978609078}{266444898003085359586011897021019} a^{14} - \frac{25610847398317640765932994693935}{532889796006170719172023794042038} a^{13} + \frac{25237829681536809442941121497963}{532889796006170719172023794042038} a^{12} - \frac{130995838080994982610789033868809}{532889796006170719172023794042038} a^{11} - \frac{131021850277010686176087313999391}{532889796006170719172023794042038} a^{10} + \frac{41706972901271241641506391667790}{266444898003085359586011897021019} a^{9} + \frac{8009795453999503028577898784562}{266444898003085359586011897021019} a^{8} - \frac{65014783631528562841257091821582}{266444898003085359586011897021019} a^{7} - \frac{56843716351853268288832298663541}{532889796006170719172023794042038} a^{6} + \frac{14108250452488422040938460625751}{266444898003085359586011897021019} a^{5} + \frac{12256852401665362482489951935868}{266444898003085359586011897021019} a^{4} + \frac{265206039510006484578057442395793}{532889796006170719172023794042038} a^{3} - \frac{88940318652386340409772253646479}{532889796006170719172023794042038} a^{2} - \frac{9251168935373189013532233238927}{266444898003085359586011897021019} a - \frac{115463122137436919723060513702419}{266444898003085359586011897021019}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 49659383.564 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4.C_2^3.C_2$ (as 16T565):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$
Character table for $C_2^4.C_2^3.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{41}) \), 4.4.68921.1, 8.0.194754273881.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ R R ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
37Data not computed
41Data not computed