Normalized defining polynomial
\( x^{16} - 2 x^{15} + 4 x^{14} - 5 x^{13} + 3 x^{12} + 5 x^{11} - 14 x^{10} + 17 x^{9} - 12 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(7105708251953125\)
\(\medspace = 5^{12}\cdot 181\cdot 401^{2}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.79\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{3/4}181^{1/2}401^{1/2}\approx 900.8219853969824$ | ||
Ramified primes: |
\(5\), \(181\), \(401\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{181}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{3}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -\frac{77}{2} a^{15} + 56 a^{14} - 113 a^{13} + 120 a^{12} - 24 a^{11} - \frac{455}{2} a^{10} + 412 a^{9} - \frac{739}{2} a^{8} + \frac{347}{2} a^{7} + 274 a^{6} - 1065 a^{5} + 1646 a^{4} - \frac{2931}{2} a^{3} + 785 a^{2} - 240 a + 32 \)
(order $10$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a^{15}-2a^{14}+4a^{13}-5a^{12}+3a^{11}+5a^{10}-14a^{9}+17a^{8}-12a^{7}-3a^{6}+31a^{5}-60a^{4}+68a^{3}-50a^{2}+24a-7$, $15a^{15}-\frac{81}{2}a^{14}+65a^{13}-\frac{189}{2}a^{12}+51a^{11}+91a^{10}-\frac{543}{2}a^{9}+307a^{8}-191a^{7}-\frac{133}{2}a^{6}+\frac{1127}{2}a^{5}-\frac{2217}{2}a^{4}+1214a^{3}-\frac{1591}{2}a^{2}+299a-\frac{105}{2}$, $\frac{7}{2}a^{15}-9a^{14}+\frac{21}{2}a^{13}-\frac{39}{2}a^{12}+2a^{11}+\frac{47}{2}a^{10}-57a^{9}+46a^{8}-23a^{7}-\frac{53}{2}a^{6}+127a^{5}-\frac{429}{2}a^{4}+\frac{379}{2}a^{3}-97a^{2}+\frac{53}{2}a-\frac{7}{2}$, $\frac{21}{2}a^{15}+\frac{11}{2}a^{14}+\frac{23}{2}a^{13}+19a^{12}-32a^{11}+\frac{113}{2}a^{10}+\frac{11}{2}a^{9}-61a^{8}+72a^{7}-113a^{6}+\frac{251}{2}a^{5}+38a^{4}-\frac{481}{2}a^{3}+\frac{525}{2}a^{2}-\frac{267}{2}a+31$, $\frac{19}{2}a^{14}-8a^{13}+\frac{43}{2}a^{12}-16a^{11}-7a^{10}+\frac{105}{2}a^{9}-68a^{8}+42a^{7}-\frac{21}{2}a^{6}-\frac{153}{2}a^{5}+\frac{431}{2}a^{4}-262a^{3}+\frac{349}{2}a^{2}-61a+\frac{19}{2}$, $33a^{15}-\frac{109}{2}a^{14}+\frac{209}{2}a^{13}-\frac{237}{2}a^{12}+36a^{11}+198a^{10}-\frac{783}{2}a^{9}+\frac{749}{2}a^{8}-188a^{7}-222a^{6}+966a^{5}-\frac{3151}{2}a^{4}+1478a^{3}-\frac{1667}{2}a^{2}+\frac{539}{2}a-\frac{77}{2}$, $\frac{73}{2}a^{15}-58a^{14}+\frac{219}{2}a^{13}-\frac{251}{2}a^{12}+27a^{11}+\frac{435}{2}a^{10}-417a^{9}+377a^{8}-184a^{7}-\frac{511}{2}a^{6}+1048a^{5}-\frac{3317}{2}a^{4}+\frac{3003}{2}a^{3}-819a^{2}+\frac{513}{2}a-\frac{73}{2}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 60.6835925321 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 60.6835925321 \cdot 1}{10\cdot\sqrt{7105708251953125}}\cr\approx \mathstrut & 0.174866470507 \end{aligned}\]
Galois group
$C_4^4.C_2\wr C_4$ (as 16T1771):
A solvable group of order 16384 |
The 190 conjugacy class representatives for $C_4^4.C_2\wr C_4$ |
Character table for $C_4^4.C_2\wr C_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.6265625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.0.3207314697265625.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }{,}\,{\href{/padicField/2.4.0.1}{4} }^{2}$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | $16$ | ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | $16$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.4.0.1}{4} }^{2}$ | $16$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\)
| 5.16.12.1 | $x^{16} + 16 x^{14} + 16 x^{13} + 124 x^{12} + 192 x^{11} + 368 x^{10} - 16 x^{9} + 1462 x^{8} + 2688 x^{7} + 2544 x^{6} + 5232 x^{5} + 14108 x^{4} + 4800 x^{3} + 8592 x^{2} - 6512 x + 13041$ | $4$ | $4$ | $12$ | $C_4^2$ | $[\ ]_{4}^{4}$ |
\(181\)
| $\Q_{181}$ | $x + 179$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{181}$ | $x + 179$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{181}$ | $x + 179$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{181}$ | $x + 179$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{181}$ | $x + 179$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{181}$ | $x + 179$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{181}$ | $x + 179$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{181}$ | $x + 179$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
181.2.0.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
181.2.0.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
181.2.0.1 | $x^{2} + 177 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
181.2.1.2 | $x^{2} + 362$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(401\)
| $\Q_{401}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{401}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{401}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{401}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |