Normalized defining polynomial
\( x^{16} - 5 x^{15} - 54 x^{14} + 120 x^{13} + 2022 x^{12} + 2365 x^{11} - 37077 x^{10} - 93940 x^{9} + 252315 x^{8} + 476460 x^{7} + 397857 x^{6} + 15873125 x^{5} + 33865162 x^{4} - 62209555 x^{3} - 158984011 x^{2} + 96448345 x + 272283001 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(709176532647391224615478515625=5^{14}\cdot 47^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{131} a^{13} + \frac{11}{131} a^{12} - \frac{20}{131} a^{11} - \frac{17}{131} a^{10} - \frac{57}{131} a^{9} + \frac{14}{131} a^{8} + \frac{2}{131} a^{7} - \frac{40}{131} a^{6} - \frac{65}{131} a^{5} + \frac{21}{131} a^{4} + \frac{36}{131} a^{3} - \frac{41}{131} a^{2} + \frac{51}{131} a + \frac{15}{131}$, $\frac{1}{2489} a^{14} - \frac{8}{2489} a^{13} - \frac{491}{2489} a^{12} - \frac{685}{2489} a^{11} + \frac{528}{2489} a^{10} + \frac{311}{2489} a^{9} - \frac{788}{2489} a^{8} + \frac{577}{2489} a^{7} + \frac{9}{131} a^{6} - \frac{58}{131} a^{5} + \frac{947}{2489} a^{4} + \frac{192}{2489} a^{3} - \frac{87}{2489} a^{2} + \frac{1142}{2489} a + \frac{894}{2489}$, $\frac{1}{2213168819003997566896561816990254369753410799275184466561} a^{15} - \frac{405192170699617245331213377785533523664940723310458962}{2213168819003997566896561816990254369753410799275184466561} a^{14} + \frac{7598588016032501601771341395444075238488965369420836617}{2213168819003997566896561816990254369753410799275184466561} a^{13} - \frac{140098063504670375615953376282013352498794369628908803087}{2213168819003997566896561816990254369753410799275184466561} a^{12} + \frac{910747869134505902958507404781890578722385275187702802907}{2213168819003997566896561816990254369753410799275184466561} a^{11} - \frac{614251227474765110184244474349093394496209111518557762907}{2213168819003997566896561816990254369753410799275184466561} a^{10} - \frac{519943643650427656742782967479069634909323991529550704380}{2213168819003997566896561816990254369753410799275184466561} a^{9} - \frac{142229657372785855156522666284926175589450276608175307121}{2213168819003997566896561816990254369753410799275184466561} a^{8} + \frac{390807278577699183863591423666061292147370923467622910}{116482569421263029836661148262644966829126884172378129819} a^{7} + \frac{32782065915922320450346998387083132360445298845024918812}{116482569421263029836661148262644966829126884172378129819} a^{6} - \frac{378951709829609170453764219184391097840211017261207936600}{2213168819003997566896561816990254369753410799275184466561} a^{5} + \frac{673964342134744141895378800828804246842975923741796621320}{2213168819003997566896561816990254369753410799275184466561} a^{4} + \frac{714610259862292062400127669726913769650997972411635046314}{2213168819003997566896561816990254369753410799275184466561} a^{3} - \frac{233239112986548714011124691011771320721949512334808359913}{2213168819003997566896561816990254369753410799275184466561} a^{2} + \frac{108391530459133993842588447910769304898378325555027889656}{2213168819003997566896561816990254369753410799275184466561} a + \frac{2623862991017439904479955452862367034112180373463192}{7059121836328890966405741970949940417497538583866319}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{9346917821637279914437863667742831244028977182530}{116482569421263029836661148262644966829126884172378129819} a^{15} - \frac{75384939091075986431901586847519823670591840329268}{116482569421263029836661148262644966829126884172378129819} a^{14} - \frac{275174354171542532854620871313188791157425610839359}{116482569421263029836661148262644966829126884172378129819} a^{13} + \frac{1964239754221651528712674874777616725544935086508153}{116482569421263029836661148262644966829126884172378129819} a^{12} + \frac{13033663781371407451521653581569344856471843163267447}{116482569421263029836661148262644966829126884172378129819} a^{11} - \frac{17810537668580881700055397470999671361506883587372385}{116482569421263029836661148262644966829126884172378129819} a^{10} - \frac{296887038132011278965657329537970584483206003593253449}{116482569421263029836661148262644966829126884172378129819} a^{9} + \frac{16514209788267707384412054368597250788129806693955895}{116482569421263029836661148262644966829126884172378129819} a^{8} + \frac{2384075391077359618243836391782503959172876128116271173}{116482569421263029836661148262644966829126884172378129819} a^{7} - \frac{2429315281178465402237760076119567002688354052365352933}{116482569421263029836661148262644966829126884172378129819} a^{6} + \frac{10816050927900297775217613380541917546106952251238481171}{116482569421263029836661148262644966829126884172378129819} a^{5} + \frac{112331743432806462818978168351836697819912548582430848701}{116482569421263029836661148262644966829126884172378129819} a^{4} - \frac{28155882734483704598120979631696687344798835131325479323}{116482569421263029836661148262644966829126884172378129819} a^{3} - \frac{531151217323157386942110203110033837838771626153329403535}{116482569421263029836661148262644966829126884172378129819} a^{2} + \frac{10453740307769477256797209567535721246208073145952558823}{116482569421263029836661148262644966829126884172378129819} a + \frac{62093138286729203816055999450938047746430122446401927}{7059121836328890966405741970949940417497538583866319} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 162503363.421 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{-235}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-47}) \), \(\Q(\sqrt{5}, \sqrt{-47})\), 4.4.276125.1, \(\Q(\zeta_{5})\), 8.0.76245015625.1, 8.4.842126197578125.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 47 | Data not computed | ||||||