Normalized defining polynomial
\( x^{16} - x^{15} + 25 x^{14} - 120 x^{13} + 368 x^{12} - 910 x^{11} + 2354 x^{10} - 4094 x^{9} + 7600 x^{8} - 10795 x^{7} + 14067 x^{6} - 15199 x^{5} + 14342 x^{4} - 10867 x^{3} + 6833 x^{2} - 3160 x + 925 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(704265643832481075413250625=5^{4}\cdot 101^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{3515} a^{14} - \frac{28}{703} a^{13} + \frac{89}{3515} a^{12} - \frac{86}{3515} a^{11} - \frac{711}{3515} a^{10} + \frac{39}{3515} a^{9} + \frac{956}{3515} a^{8} - \frac{612}{3515} a^{7} + \frac{206}{703} a^{6} - \frac{1217}{3515} a^{5} - \frac{279}{3515} a^{4} - \frac{38}{185} a^{3} + \frac{1307}{3515} a^{2} + \frac{328}{703} a - \frac{8}{19}$, $\frac{1}{1766967320105211189475} a^{15} + \frac{94091669726385929}{1766967320105211189475} a^{14} - \frac{23274716349818692899}{353393464021042237895} a^{13} - \frac{27008400150897683272}{353393464021042237895} a^{12} - \frac{156768180999624388667}{1766967320105211189475} a^{11} - \frac{2870947986890664428}{18599656001107486205} a^{10} + \frac{52588903230645360879}{1766967320105211189475} a^{9} - \frac{179611815784494194384}{1766967320105211189475} a^{8} + \frac{143263276303053002091}{353393464021042237895} a^{7} + \frac{683953665518286612}{4977372732690735745} a^{6} - \frac{331074208647227210173}{1766967320105211189475} a^{5} + \frac{42566966791397716721}{1766967320105211189475} a^{4} + \frac{416630182610847267982}{1766967320105211189475} a^{3} - \frac{626744549873397119602}{1766967320105211189475} a^{2} + \frac{28960579843482636}{133024717315757825} a - \frac{1818094332398574883}{9551174703271411835}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 239115.177539 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T158):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{101}) \), 4.4.51005.1, 4.0.1030301.1, 4.0.5151505.1, 8.4.262752512525.1 x2, 8.0.5307600753005.1 x2, 8.0.26538003765025.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $101$ | 101.8.6.1 | $x^{8} - 707 x^{4} + 826281$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 101.8.6.1 | $x^{8} - 707 x^{4} + 826281$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |