Normalized defining polynomial
\( x^{16} - 8 x^{13} + 20 x^{12} - 40 x^{10} + 8 x^{9} + 102 x^{8} - 128 x^{7} + 8 x^{6} + 72 x^{5} - 12 x^{4} - 56 x^{3} + 48 x^{2} - 16 x + 2 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(703687441776640000=2^{50}\cdot 5^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{13} a^{13} + \frac{6}{13} a^{12} - \frac{2}{13} a^{11} - \frac{6}{13} a^{10} + \frac{4}{13} a^{9} + \frac{2}{13} a^{8} + \frac{6}{13} a^{7} - \frac{6}{13} a^{5} + \frac{1}{13} a^{4} - \frac{5}{13} a^{3} - \frac{5}{13} a^{2} + \frac{3}{13}$, $\frac{1}{169} a^{14} + \frac{4}{169} a^{13} + \frac{12}{169} a^{12} + \frac{24}{169} a^{11} + \frac{68}{169} a^{10} + \frac{7}{169} a^{9} + \frac{54}{169} a^{8} + \frac{27}{169} a^{7} - \frac{6}{169} a^{6} + \frac{6}{13} a^{5} + \frac{6}{169} a^{4} - \frac{47}{169} a^{3} - \frac{55}{169} a^{2} + \frac{81}{169} a - \frac{84}{169}$, $\frac{1}{2197} a^{15} + \frac{2}{2197} a^{14} + \frac{4}{2197} a^{13} + \frac{20}{2197} a^{11} + \frac{40}{2197} a^{10} + \frac{40}{2197} a^{9} + \frac{88}{2197} a^{8} + \frac{278}{2197} a^{7} + \frac{428}{2197} a^{6} + \frac{864}{2197} a^{5} - \frac{397}{2197} a^{4} - \frac{62}{169} a^{3} + \frac{529}{2197} a^{2} - \frac{1091}{2197} a - \frac{1}{2197}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{125166}{2197} a^{15} + \frac{67552}{2197} a^{14} + \frac{36226}{2197} a^{13} - \frac{75549}{169} a^{12} + \frac{1972842}{2197} a^{11} + \frac{1066132}{2197} a^{10} - \frac{4433492}{2197} a^{9} - \frac{1395751}{2197} a^{8} + \frac{12017730}{2197} a^{7} - \frac{9528612}{2197} a^{6} - \frac{4157414}{2197} a^{5} + \frac{6770269}{2197} a^{4} + \frac{166358}{169} a^{3} - \frac{5846992}{2197} a^{2} + \frac{2846144}{2197} a - \frac{460085}{2197} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1017.57695965 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_2^2$ (as 16T150):
| A solvable group of order 64 |
| The 16 conjugacy class representatives for $C_2\wr C_2^2$ |
| Character table for $C_2\wr C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), 4.2.1024.1 x2, 4.0.512.1 x2, \(\Q(\zeta_{8})\), 8.0.4194304.1, 8.0.419430400.1, 8.4.419430400.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |