Normalized defining polynomial
\( x^{16} - 6 x^{14} - 520 x^{12} - 2200 x^{11} - 1332 x^{10} + 9896 x^{9} + 80197 x^{8} + 480168 x^{7} + 1622334 x^{6} + 4107528 x^{5} + 11430398 x^{4} + 22638336 x^{3} + 34893252 x^{2} + 55615680 x + 61140096 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(70367540303366615290376880128=2^{45}\cdot 7^{4}\cdot 97^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{12} a^{10} - \frac{1}{3} a^{7} - \frac{1}{4} a^{6} + \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3} a$, $\frac{1}{24} a^{11} - \frac{1}{6} a^{8} + \frac{3}{8} a^{7} - \frac{5}{12} a^{5} - \frac{1}{6} a^{4} + \frac{5}{12} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{24} a^{12} + \frac{1}{24} a^{8} - \frac{1}{3} a^{7} - \frac{5}{12} a^{6} + \frac{1}{3} a^{5} + \frac{5}{12} a^{4} + \frac{1}{6} a^{2} + \frac{1}{3} a$, $\frac{1}{24} a^{13} + \frac{1}{24} a^{9} + \frac{1}{6} a^{8} - \frac{5}{12} a^{7} + \frac{1}{3} a^{6} + \frac{5}{12} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{1224} a^{14} - \frac{1}{102} a^{13} - \frac{7}{408} a^{12} + \frac{1}{68} a^{11} - \frac{49}{1224} a^{10} - \frac{11}{153} a^{9} - \frac{15}{136} a^{8} + \frac{157}{612} a^{7} + \frac{89}{612} a^{6} - \frac{25}{51} a^{5} - \frac{79}{204} a^{4} + \frac{25}{102} a^{3} - \frac{47}{153} a^{2} + \frac{13}{51} a + \frac{3}{17}$, $\frac{1}{23388452557449446413057076025754162592610348912} a^{15} - \frac{14020188840230812779095283244660918973801}{487259428280196800272022417203211720679382269} a^{14} - \frac{1364613618196761637047149439156052165756807}{3898075426241574402176179337625693765435058152} a^{13} - \frac{2951689849070176439002508828928179191671145}{1299358475413858134058726445875231255145019384} a^{12} + \frac{7738362984871527359578281241845920972302148}{1461778284840590400816067251609635162038146807} a^{11} + \frac{69209745646467031769824006238200989825018253}{2923556569681180801632134503219270324076293614} a^{10} + \frac{28801495236750134862901685777039653576168661}{487259428280196800272022417203211720679382269} a^{9} + \frac{174369296578266600532396751136098710080787939}{11694226278724723206528538012877081296305174456} a^{8} - \frac{9301132228181209640673680281663227791767535771}{23388452557449446413057076025754162592610348912} a^{7} - \frac{461158967010108718955195865044981239423122395}{1949037713120787201088089668812846882717529076} a^{6} - \frac{607424578562458740516146219020333015062323107}{3898075426241574402176179337625693765435058152} a^{5} - \frac{2770819539155489807471157409696851799577003}{38216425747466415707609601349271507504265276} a^{4} + \frac{4410228112075299813874050845472484679091070975}{11694226278724723206528538012877081296305174456} a^{3} + \frac{18003853282301056374652684325826608068439419}{57324638621199623561414402023907261256397914} a^{2} + \frac{21553240191840402080709133441936922266057319}{216559745902309689009787740979205209190836564} a + \frac{14574891654871135945323794698050120847745234}{54139936475577422252446935244801302297709141}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 75243551.1838 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 68 conjugacy class representatives for t16n1433 are not computed |
| Character table for t16n1433 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.6208.2, 8.0.1233256448.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.11.2 | $x^{4} + 8 x + 14$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.8.28.20 | $x^{8} + 8 x^{7} + 8 x^{5} + 30$ | $8$ | $1$ | $28$ | $C_2^3: C_4$ | $[2, 3, 7/2, 4, 17/4]$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.8.0.1 | $x^{8} - x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |