Normalized defining polynomial
\( x^{16} - 8 x^{15} + 172 x^{14} - 1064 x^{13} + 12790 x^{12} - 63272 x^{11} + 545756 x^{10} - 2173192 x^{9} + 14717225 x^{8} - 46483984 x^{7} + 257684608 x^{6} - 618835120 x^{5} + 2865222448 x^{4} - 4749263824 x^{3} + 18507232360 x^{2} - 16228594896 x + 53156361278 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6996429487079101204569997541638144=2^{62}\cdot 79^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $130.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2528=2^{5}\cdot 79\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2528}(1,·)$, $\chi_{2528}(2053,·)$, $\chi_{2528}(2369,·)$, $\chi_{2528}(1737,·)$, $\chi_{2528}(1421,·)$, $\chi_{2528}(1105,·)$, $\chi_{2528}(789,·)$, $\chi_{2528}(473,·)$, $\chi_{2528}(157,·)$, $\chi_{2528}(2213,·)$, $\chi_{2528}(1897,·)$, $\chi_{2528}(1581,·)$, $\chi_{2528}(1265,·)$, $\chi_{2528}(949,·)$, $\chi_{2528}(633,·)$, $\chi_{2528}(317,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{527} a^{13} + \frac{257}{527} a^{12} - \frac{57}{527} a^{11} - \frac{142}{527} a^{10} - \frac{241}{527} a^{9} + \frac{66}{527} a^{8} - \frac{226}{527} a^{7} + \frac{159}{527} a^{6} + \frac{183}{527} a^{5} - \frac{230}{527} a^{4} + \frac{98}{527} a^{3} - \frac{2}{17} a^{2} + \frac{162}{527} a + \frac{16}{527}$, $\frac{1}{105453458350254733715201} a^{14} - \frac{7}{105453458350254733715201} a^{13} - \frac{12343801230949783352698}{105453458350254733715201} a^{12} - \frac{31390650964556033598922}{105453458350254733715201} a^{11} - \frac{1484511337845133848677}{6203144608838513747953} a^{10} - \frac{25458312234128038685841}{105453458350254733715201} a^{9} + \frac{36434260330411764240372}{105453458350254733715201} a^{8} - \frac{682712716850839015}{3283824567939922577} a^{7} + \frac{36739591995566052594204}{105453458350254733715201} a^{6} - \frac{6019606293620541595272}{105453458350254733715201} a^{5} + \frac{48744642483317873203726}{105453458350254733715201} a^{4} + \frac{28867136505963724280289}{105453458350254733715201} a^{3} + \frac{34688559645481986267417}{105453458350254733715201} a^{2} + \frac{42352284332365999078136}{105453458350254733715201} a - \frac{21426352294159790143891}{105453458350254733715201}$, $\frac{1}{11366933729032308001895230991} a^{15} + \frac{53888}{11366933729032308001895230991} a^{14} + \frac{938738338311290727367476}{11366933729032308001895230991} a^{13} + \frac{19502294653986290126583423}{44229314120748280163016463} a^{12} + \frac{13758513674274154936085403}{117184883804456783524693103} a^{11} + \frac{1953961038189120240576674574}{11366933729032308001895230991} a^{10} - \frac{4481184046773136974145782432}{11366933729032308001895230991} a^{9} - \frac{3318429125260457247147256265}{11366933729032308001895230991} a^{8} - \frac{1639991331876758352898043144}{11366933729032308001895230991} a^{7} - \frac{1478586435063965019251238523}{11366933729032308001895230991} a^{6} - \frac{2554563301943423431846016976}{11366933729032308001895230991} a^{5} + \frac{3009035380443258385728466985}{11366933729032308001895230991} a^{4} - \frac{4977132995214556220834662741}{11366933729032308001895230991} a^{3} - \frac{3705866131492560525916118579}{11366933729032308001895230991} a^{2} + \frac{3562662272610434369934697225}{11366933729032308001895230991} a + \frac{146262424865437822186455292}{668643160531312235405601823}$
Class group and class number
$C_{4}\times C_{432}\times C_{2160}$, which has order $3732480$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ | |
| $79$ | 79.4.2.1 | $x^{4} + 395 x^{2} + 56169$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 79.4.2.1 | $x^{4} + 395 x^{2} + 56169$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 79.4.2.1 | $x^{4} + 395 x^{2} + 56169$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 79.4.2.1 | $x^{4} + 395 x^{2} + 56169$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |