Normalized defining polynomial
\( x^{16} + 80 x^{14} + 2600 x^{12} + 44000 x^{10} + 412500 x^{8} + 2100000 x^{6} + 5250000 x^{4} + 5000000 x^{2} + 14371681 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(697708606768276588334338277376=2^{64}\cdot 3^{8}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(672=2^{5}\cdot 3\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{672}(1,·)$, $\chi_{672}(587,·)$, $\chi_{672}(589,·)$, $\chi_{672}(335,·)$, $\chi_{672}(337,·)$, $\chi_{672}(83,·)$, $\chi_{672}(85,·)$, $\chi_{672}(671,·)$, $\chi_{672}(419,·)$, $\chi_{672}(421,·)$, $\chi_{672}(167,·)$, $\chi_{672}(169,·)$, $\chi_{672}(503,·)$, $\chi_{672}(505,·)$, $\chi_{672}(251,·)$, $\chi_{672}(253,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{781} a^{8} + \frac{40}{781} a^{6} - \frac{281}{781} a^{4} - \frac{343}{781} a^{2} - \frac{312}{781}$, $\frac{1}{2960771} a^{9} + \frac{363986}{2960771} a^{7} + \frac{52678}{174163} a^{5} + \frac{69947}{2960771} a^{3} - \frac{1309268}{2960771} a$, $\frac{1}{2960771} a^{10} + \frac{50}{2960771} a^{8} + \frac{67173}{174163} a^{6} - \frac{1291022}{2960771} a^{4} - \frac{831602}{2960771} a^{2} + \frac{274}{781}$, $\frac{1}{2960771} a^{11} + \frac{64297}{269161} a^{7} + \frac{1305014}{2960771} a^{5} - \frac{1368181}{2960771} a^{3} + \frac{1365172}{2960771} a$, $\frac{1}{2960771} a^{12} - \frac{150}{269161} a^{8} - \frac{404727}{2960771} a^{6} - \frac{534161}{2960771} a^{4} - \frac{1220290}{2960771} a^{2} - \frac{21}{71}$, $\frac{1}{2960771} a^{13} - \frac{864340}{2960771} a^{7} - \frac{340990}{2960771} a^{5} - \frac{1277809}{2960771} a^{3} + \frac{17719}{269161} a$, $\frac{1}{2960771} a^{14} + \frac{8}{2960771} a^{8} - \frac{1296322}{2960771} a^{6} - \frac{125125}{269161} a^{4} - \frac{199355}{2960771} a^{2} - \frac{65}{781}$, $\frac{1}{2960771} a^{15} - \frac{1247439}{2960771} a^{7} + \frac{341730}{2960771} a^{5} - \frac{44643}{174163} a^{3} + \frac{1345416}{2960771} a$
Class group and class number
$C_{2}\times C_{8}\times C_{1168}$, which has order $18688$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-42}) \), \(\Q(\sqrt{2}, \sqrt{-21})\), \(\Q(\zeta_{16})^+\), 4.0.903168.5, 8.0.3262849744896.5, 8.0.417644767346688.52, \(\Q(\zeta_{32})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |