\\ Pari/GP code for working with number field 16.0.6944521157247548712550400000000.1. \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^16 - 6*y^15 + 58*y^14 - 150*y^13 + 1015*y^12 - 2812*y^11 + 10766*y^10 - 27256*y^9 + 54324*y^8 - 164802*y^7 + 156958*y^6 - 705304*y^5 + 1223950*y^4 - 1382320*y^3 + 7647038*y^2 + 37860*y + 12543759, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: \\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 - 6*x^15 + 58*x^14 - 150*x^13 + 1015*x^12 - 2812*x^11 + 10766*x^10 - 27256*x^9 + 54324*x^8 - 164802*x^7 + 156958*x^6 - 705304*x^5 + 1223950*x^4 - 1382320*x^3 + 7647038*x^2 + 37860*x + 12543759, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(L)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])