Normalized defining polynomial
\( x^{16} - 6 x^{15} + 58 x^{14} - 150 x^{13} + 1015 x^{12} - 2812 x^{11} + 10766 x^{10} - 27256 x^{9} + 54324 x^{8} - 164802 x^{7} + 156958 x^{6} - 705304 x^{5} + 1223950 x^{4} - 1382320 x^{3} + 7647038 x^{2} + 37860 x + 12543759 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6944521157247548712550400000000=2^{24}\cdot 5^{8}\cdot 19^{6}\cdot 29^{3}\cdot 31^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19, 29, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{9} + \frac{2}{9} a^{8} + \frac{4}{9} a^{7} - \frac{1}{3} a^{6} - \frac{4}{9} a^{5} - \frac{1}{3} a^{4} - \frac{1}{9} a^{3} - \frac{4}{9} a^{2} - \frac{4}{9} a + \frac{1}{3}$, $\frac{1}{27} a^{14} + \frac{1}{9} a^{12} - \frac{1}{9} a^{11} + \frac{4}{27} a^{10} - \frac{4}{27} a^{9} + \frac{1}{27} a^{8} - \frac{4}{27} a^{6} - \frac{2}{9} a^{5} - \frac{7}{27} a^{4} + \frac{5}{27} a^{3} - \frac{13}{27} a^{2} + \frac{1}{9} a$, $\frac{1}{1254042745238726911729899860157176641650003149703} a^{15} - \frac{580631866090721258199394098207422538730218812}{139338082804302990192211095573019626850000349967} a^{14} - \frac{1864153830626294817456966675028213353158342041}{139338082804302990192211095573019626850000349967} a^{13} - \frac{68393532428557871822804906371292421768488394631}{418014248412908970576633286719058880550001049901} a^{12} + \frac{131105506409607438062287471842145075540948068958}{1254042745238726911729899860157176641650003149703} a^{11} + \frac{125608215219665288253403759184318169300582810506}{1254042745238726911729899860157176641650003149703} a^{10} + \frac{25629735654819704156710650886750688459931382495}{1254042745238726911729899860157176641650003149703} a^{9} - \frac{199030375134304615156902129539938838820011276213}{418014248412908970576633286719058880550001049901} a^{8} + \frac{514160803465366295491695908176611875987660956256}{1254042745238726911729899860157176641650003149703} a^{7} - \frac{140204330334421434416254129796594169931283079539}{418014248412908970576633286719058880550001049901} a^{6} - \frac{357872281655250203397564560335481116622395754884}{1254042745238726911729899860157176641650003149703} a^{5} - \frac{4097368749410325350477388304172251107228329314}{1254042745238726911729899860157176641650003149703} a^{4} + \frac{72106169147857531852341596733908297578659397640}{1254042745238726911729899860157176641650003149703} a^{3} + \frac{103342205776157180111712296858289367318103302238}{418014248412908970576633286719058880550001049901} a^{2} - \frac{119070725393499318236163617798324981217115435181}{418014248412908970576633286719058880550001049901} a + \frac{43212775390322917772557563862855906565587139735}{139338082804302990192211095573019626850000349967}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{820}$, which has order $13120$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70657.2169247 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8192 |
| The 152 conjugacy class representatives for t16n1719 are not computed |
| Character table for t16n1719 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.12400.1, 4.4.14725.1, 4.4.7600.1, 8.8.55507360000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $31$ | 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |