Normalized defining polynomial
\( x^{16} - 7 x^{15} + 25 x^{14} - 55 x^{13} + 75 x^{12} - 46 x^{11} - 43 x^{10} + 140 x^{9} - 160 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(6926910400390625\)
\(\medspace = 5^{15}\cdot 61^{3}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.77\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{15/16}61^{3/4}\approx 98.69195574460448$ | ||
Ramified primes: |
\(5\), \(61\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{305}) \) | ||
$\card{ \Aut(K/\Q) }$: | $4$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{1231}a^{15}-\frac{252}{1231}a^{14}+\frac{215}{1231}a^{13}+\frac{203}{1231}a^{12}-\frac{420}{1231}a^{11}-\frac{550}{1231}a^{10}+\frac{528}{1231}a^{9}+\frac{35}{1231}a^{8}-\frac{118}{1231}a^{7}-\frac{554}{1231}a^{6}+\frac{357}{1231}a^{5}-\frac{173}{1231}a^{4}-\frac{590}{1231}a^{3}+\frac{453}{1231}a^{2}-\frac{165}{1231}a-\frac{206}{1231}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( \frac{6623}{1231} a^{15} - \frac{44076}{1231} a^{14} + \frac{149860}{1231} a^{13} - \frac{309995}{1231} a^{12} + \frac{383241}{1231} a^{11} - \frac{163844}{1231} a^{10} - \frac{343776}{1231} a^{9} + \frac{796834}{1231} a^{8} - \frac{764280}{1231} a^{7} + \frac{252824}{1231} a^{6} + \frac{327106}{1231} a^{5} - \frac{595522}{1231} a^{4} + \frac{512951}{1231} a^{3} - \frac{281627}{1231} a^{2} + \frac{100044}{1231} a - \frac{17624}{1231} \)
(order $10$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{11001}{1231}a^{15}-\frac{72669}{1231}a^{14}+\frac{246664}{1231}a^{13}-\frac{509465}{1231}a^{12}+\frac{628564}{1231}a^{11}-\frac{263619}{1231}a^{10}-\frac{577900}{1231}a^{9}+\frac{1326750}{1231}a^{8}-\frac{1258726}{1231}a^{7}+\frac{392816}{1231}a^{6}+\frac{577806}{1231}a^{5}-\frac{998388}{1231}a^{4}+\frac{830167}{1231}a^{3}-\frac{439102}{1231}a^{2}+\frac{147049}{1231}a-\frac{23324}{1231}$, $\frac{5015}{1231}a^{15}-\frac{31549}{1231}a^{14}+\frac{102042}{1231}a^{13}-\frac{196952}{1231}a^{12}+\frac{214135}{1231}a^{11}-\frac{32816}{1231}a^{10}-\frac{294170}{1231}a^{9}+\frac{511588}{1231}a^{8}-\frac{377576}{1231}a^{7}+\frac{7443}{1231}a^{6}+\frac{297152}{1231}a^{5}-\frac{350575}{1231}a^{4}+\frac{231902}{1231}a^{3}-\frac{94187}{1231}a^{2}+\frac{20684}{1231}a-\frac{281}{1231}$, $\frac{1635}{1231}a^{15}-\frac{8252}{1231}a^{14}+\frac{21617}{1231}a^{13}-\frac{28778}{1231}a^{12}+\frac{6353}{1231}a^{11}+\frac{51082}{1231}a^{10}-\frac{93207}{1231}a^{9}+\frac{65842}{1231}a^{8}+\frac{32343}{1231}a^{7}-\frac{98254}{1231}a^{6}+\frac{90064}{1231}a^{5}-\frac{20652}{1231}a^{4}-\frac{26628}{1231}a^{3}+\frac{37754}{1231}a^{2}-\frac{21113}{1231}a+\frac{6639}{1231}$, $\frac{11939}{1231}a^{15}-\frac{76386}{1231}a^{14}+\frac{251374}{1231}a^{13}-\frac{498777}{1231}a^{12}+\frac{575591}{1231}a^{11}-\frac{168943}{1231}a^{10}-\frac{643972}{1231}a^{9}+\frac{1273410}{1231}a^{8}-\frac{1082587}{1231}a^{7}+\frac{226461}{1231}a^{6}+\frac{613539}{1231}a^{5}-\frac{912000}{1231}a^{4}+\frac{716214}{1231}a^{3}-\frac{360099}{1231}a^{2}+\frac{114148}{1231}a-\frac{17130}{1231}$, $\frac{2116}{1231}a^{15}-\frac{14981}{1231}a^{14}+\frac{53634}{1231}a^{13}-\frac{117016}{1231}a^{12}+\frac{155168}{1231}a^{11}-\frac{82982}{1231}a^{10}-\frac{114983}{1231}a^{9}+\frac{311643}{1231}a^{8}-\frac{322317}{1231}a^{7}+\frac{123979}{1231}a^{6}+\frac{120216}{1231}a^{5}-\frac{236813}{1231}a^{4}+\frac{211526}{1231}a^{3}-\frac{118577}{1231}a^{2}+\frac{43549}{1231}a-\frac{7508}{1231}$, $\frac{3937}{1231}a^{15}-\frac{27020}{1231}a^{14}+\frac{93083}{1231}a^{13}-\frac{194206}{1231}a^{12}+\frac{239738}{1231}a^{11}-\frac{97270}{1231}a^{10}-\frac{229389}{1231}a^{9}+\frac{510788}{1231}a^{8}-\frac{471952}{1231}a^{7}+\frac{127027}{1231}a^{6}+\frac{232366}{1231}a^{5}-\frac{377044}{1231}a^{4}+\frac{302893}{1231}a^{3}-\frac{156595}{1231}a^{2}+\frac{50834}{1231}a-\frac{8410}{1231}$, $\frac{2520}{1231}a^{15}-\frac{15847}{1231}a^{14}+\frac{51862}{1231}a^{13}-\frac{101478}{1231}a^{12}+\frac{113512}{1231}a^{11}-\frac{23283}{1231}a^{10}-\frac{146640}{1231}a^{9}+\frac{266695}{1231}a^{8}-\frac{203804}{1231}a^{7}+\frac{13415}{1231}a^{6}+\frac{152423}{1231}a^{5}-\frac{181143}{1231}a^{4}+\frac{125810}{1231}a^{3}-\frac{53741}{1231}a^{2}+\frac{13819}{1231}a-\frac{869}{1231}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 65.2827160145 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 65.2827160145 \cdot 1}{10\cdot\sqrt{6926910400390625}}\cr\approx \mathstrut & 0.190531758727 \end{aligned}\]
Galois group
$C_4\wr C_4$ (as 16T1192):
A solvable group of order 1024 |
The 88 conjugacy class representatives for $C_4\wr C_4$ |
Character table for $C_4\wr C_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.4765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | $16$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{3}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | $16$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | $16$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\)
| 5.16.15.2 | $x^{16} + 5$ | $16$ | $1$ | $15$ | 16T125 | $[\ ]_{16}^{4}$ |
\(61\)
| 61.2.0.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
61.2.0.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
61.4.0.1 | $x^{4} + 3 x^{2} + 40 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
61.4.0.1 | $x^{4} + 3 x^{2} + 40 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
61.4.3.1 | $x^{4} + 183$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |