Normalized defining polynomial
\( x^{16} - 5 x^{15} + 23 x^{14} - 86 x^{13} + 242 x^{12} - 580 x^{11} + 1214 x^{10} - 2157 x^{9} + 3306 x^{8} - 4469 x^{7} + 5367 x^{6} - 5584 x^{5} + 5158 x^{4} - 4036 x^{3} + 2806 x^{2} - 1518 x + 541 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(690527632635763191909=3^{10}\cdot 61^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11854864872211966513741} a^{15} - \frac{86543991219693092599}{1693552124601709501963} a^{14} - \frac{662821098335002837130}{11854864872211966513741} a^{13} + \frac{2165844361540244485136}{11854864872211966513741} a^{12} - \frac{4766516644792791025373}{11854864872211966513741} a^{11} + \frac{2935172815724300375025}{11854864872211966513741} a^{10} - \frac{3173833869164707811746}{11854864872211966513741} a^{9} - \frac{498260220522035910685}{11854864872211966513741} a^{8} + \frac{94426851128646973255}{382414995877805371411} a^{7} - \frac{4742186808966383242199}{11854864872211966513741} a^{6} + \frac{5818455987099103949520}{11854864872211966513741} a^{5} + \frac{4617893581774444476739}{11854864872211966513741} a^{4} - \frac{356822767182758668397}{1693552124601709501963} a^{3} + \frac{67169937738375173418}{11854864872211966513741} a^{2} - \frac{161877398855140333532}{1693552124601709501963} a + \frac{1257430400169154863317}{11854864872211966513741}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{634897293422}{137618210046601} a^{15} - \frac{2250956409501}{137618210046601} a^{14} + \frac{10324812822366}{137618210046601} a^{13} - \frac{35261624886962}{137618210046601} a^{12} + \frac{82538074053436}{137618210046601} a^{11} - \frac{177348854883403}{137618210046601} a^{10} + \frac{328123744078536}{137618210046601} a^{9} - \frac{473916322872260}{137618210046601} a^{8} + \frac{594407288967813}{137618210046601} a^{7} - \frac{671213091605878}{137618210046601} a^{6} + \frac{668054322987216}{137618210046601} a^{5} - \frac{520812330621509}{137618210046601} a^{4} + \frac{462892941086276}{137618210046601} a^{3} - \frac{249277775900956}{137618210046601} a^{2} + \frac{205644341617454}{137618210046601} a + \frac{11754687542333}{137618210046601} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23581.2211321 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^3\times C_4).D_4$ (as 16T675):
| A solvable group of order 256 |
| The 31 conjugacy class representatives for $(C_2^3\times C_4).D_4$ |
| Character table for $(C_2^3\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.549.1, 8.0.18385461.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $61$ | 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 61.4.3.3 | $x^{4} + 122$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.8.6.2 | $x^{8} + 183 x^{4} + 14884$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |