Normalized defining polynomial
\( x^{16} - 3 x^{15} + 91 x^{14} - 153 x^{13} + 4902 x^{12} - 16484 x^{11} + 53770 x^{10} - 658147 x^{9} + 947703 x^{8} - 3344945 x^{7} + 14573429 x^{6} + 48345606 x^{5} + 158818931 x^{4} + 259099211 x^{3} + 314979348 x^{2} + 216524690 x + 63667451 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6901913257237170531380177586750390625=5^{8}\cdot 29^{6}\cdot 101^{6}\cdot 409^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $200.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 101, 409$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{41} a^{14} + \frac{3}{41} a^{13} + \frac{18}{41} a^{12} + \frac{10}{41} a^{11} + \frac{3}{41} a^{10} + \frac{8}{41} a^{9} - \frac{1}{41} a^{8} - \frac{11}{41} a^{7} + \frac{13}{41} a^{6} + \frac{12}{41} a^{5} + \frac{16}{41} a^{4} - \frac{7}{41} a^{3} - \frac{3}{41} a^{2} + \frac{2}{41} a + \frac{3}{41}$, $\frac{1}{68524827073059121440284995798391289794610864643444417771349082163} a^{15} + \frac{90871260460588048512934890864219215611977399512639249876953}{40764323065472410136992858892558768467942215730781926098363523} a^{14} - \frac{32532561373309150615980597549700613984637375570253906373928364648}{68524827073059121440284995798391289794610864643444417771349082163} a^{13} + \frac{14312480586020885766428738891893260152490951867166548191382790805}{68524827073059121440284995798391289794610864643444417771349082163} a^{12} - \frac{4618441289041516647843094656890534651371245386703982275191036661}{68524827073059121440284995798391289794610864643444417771349082163} a^{11} - \frac{23172556301106541758886415489276521164362881555153344624336690338}{68524827073059121440284995798391289794610864643444417771349082163} a^{10} - \frac{28204606621294782173445960119395574255486371984793625903268222107}{68524827073059121440284995798391289794610864643444417771349082163} a^{9} - \frac{24165192386849337990654699640035018006766189221067493863027590712}{68524827073059121440284995798391289794610864643444417771349082163} a^{8} - \frac{22842402469074778077718899005908885306080774295312404973973088971}{68524827073059121440284995798391289794610864643444417771349082163} a^{7} + \frac{19890184770566245608184005967103896472119106604388115871866125522}{68524827073059121440284995798391289794610864643444417771349082163} a^{6} - \frac{7971724681871022373331665426432963777936442083006188913193223386}{68524827073059121440284995798391289794610864643444417771349082163} a^{5} + \frac{11004651694380372327143245764196680379742731192011496465826478007}{68524827073059121440284995798391289794610864643444417771349082163} a^{4} - \frac{12395864989778161633056654358420495755869124004399377083780557946}{68524827073059121440284995798391289794610864643444417771349082163} a^{3} - \frac{7922671755240607292020693459836652182704818928094346208667348226}{68524827073059121440284995798391289794610864643444417771349082163} a^{2} - \frac{31525891282437404283174860384725645078114568139753444047298444369}{68524827073059121440284995798391289794610864643444417771349082163} a + \frac{6020683962753987282860775491338552924060036937192859224763395604}{68524827073059121440284995798391289794610864643444417771349082163}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{40}$, which has order $1280$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 357925647.873 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 53 conjugacy class representatives for t16n839 are not computed |
| Character table for t16n839 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.1032725.2, 4.4.73225.1, 4.0.296525.2, 8.0.896944098450625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.3.3 | $x^{4} + 58$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $101$ | 101.4.0.1 | $x^{4} - x + 12$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.2 | $x^{4} - 101 x^{2} + 30603$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 409 | Data not computed | ||||||