Normalized defining polynomial
\( x^{16} - 4 x^{15} + 97 x^{14} - 256 x^{13} + 666 x^{12} - 3862 x^{11} + 2907 x^{10} - 143182 x^{9} + 888942 x^{8} + 1065390 x^{7} - 6719053 x^{6} - 57678898 x^{5} + 300846774 x^{4} - 369460016 x^{3} - 563128918 x^{2} + 13763104 x + 5083593679 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6901913257237170531380177586750390625=5^{8}\cdot 29^{6}\cdot 101^{6}\cdot 409^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $200.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 101, 409$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{3775679251329447713912971069863439822017870413109911508266226041059082} a^{15} + \frac{52462792939908228621783870800941642360020672644519721387356499412687}{1887839625664723856956485534931719911008935206554955754133113020529541} a^{14} - \frac{453439135651755374200089499391896788171232523974055832413597091022124}{1887839625664723856956485534931719911008935206554955754133113020529541} a^{13} + \frac{228924910773207126239124280951814521459855335741323906391346568148951}{3775679251329447713912971069863439822017870413109911508266226041059082} a^{12} - \frac{670423578825742232123152354320381874801593382640260158301180322060455}{3775679251329447713912971069863439822017870413109911508266226041059082} a^{11} - \frac{157279876342100325297240761681739520486297825370560038564837036472222}{1887839625664723856956485534931719911008935206554955754133113020529541} a^{10} + \frac{353343543293400334343453746310912830298772066130567664533397624659949}{3775679251329447713912971069863439822017870413109911508266226041059082} a^{9} + \frac{18006159730897667098208348188709121844320958777509215616194852510879}{343243568302677064901179188169403620183442764828173773478747821914462} a^{8} + \frac{317325057267441567141783095533559137644889411944650475109322342314596}{1887839625664723856956485534931719911008935206554955754133113020529541} a^{7} - \frac{264522040380313964451496213825411553833683246861447358150773106715154}{1887839625664723856956485534931719911008935206554955754133113020529541} a^{6} - \frac{1546608257224338317056711721853950671985742635459427862815666172849629}{3775679251329447713912971069863439822017870413109911508266226041059082} a^{5} + \frac{1817591222719208310544285671572959857816725067333076485276899495550115}{3775679251329447713912971069863439822017870413109911508266226041059082} a^{4} - \frac{706848970517659093933462427114058283619950872933709256637618129952241}{1887839625664723856956485534931719911008935206554955754133113020529541} a^{3} - \frac{1825158574128142855494945673677459222088012002124634563028183891522365}{3775679251329447713912971069863439822017870413109911508266226041059082} a^{2} + \frac{800856867808711776048672411466447809254535916934974569715828587806341}{1887839625664723856956485534931719911008935206554955754133113020529541} a - \frac{90334968668647757673586484766167904610757238227188962273784323761965}{3775679251329447713912971069863439822017870413109911508266226041059082}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{48}$, which has order $768$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 419559822.645 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 53 conjugacy class representatives for t16n839 are not computed |
| Character table for t16n839 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.73225.2, 4.0.1032725.1, 4.0.296525.2, 8.0.896944098450625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $101$ | 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.8.4.1 | $x^{8} + 244824 x^{4} - 1030301 x^{2} + 14984697744$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 409 | Data not computed | ||||||