Normalized defining polynomial
\( x^{16} + 884 x^{14} + 283322 x^{12} + 42405480 x^{10} + 3291492672 x^{8} + 134351822800 x^{6} + 2669893265000 x^{4} + 20635322500000 x^{2} + 51588306250000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(69012051254784469945608052647868865324253184=2^{44}\cdot 13^{12}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $549.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3536=2^{4}\cdot 13\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3536}(1,·)$, $\chi_{3536}(1477,·)$, $\chi_{3536}(1665,·)$, $\chi_{3536}(2313,·)$, $\chi_{3536}(525,·)$, $\chi_{3536}(1041,·)$, $\chi_{3536}(1685,·)$, $\chi_{3536}(441,·)$, $\chi_{3536}(3353,·)$, $\chi_{3536}(733,·)$, $\chi_{3536}(229,·)$, $\chi_{3536}(1981,·)$, $\chi_{3536}(625,·)$, $\chi_{3536}(2933,·)$, $\chi_{3536}(2937,·)$, $\chi_{3536}(2813,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{26} a^{4}$, $\frac{1}{26} a^{5}$, $\frac{1}{26} a^{6}$, $\frac{1}{26} a^{7}$, $\frac{1}{11492} a^{8}$, $\frac{1}{57460} a^{9} + \frac{1}{65} a^{7} + \frac{1}{130} a^{5} + \frac{1}{5} a$, $\frac{1}{287300} a^{10} + \frac{9}{287300} a^{8} - \frac{9}{650} a^{6} - \frac{1}{65} a^{4} - \frac{9}{25} a^{2}$, $\frac{1}{1436500} a^{11} + \frac{9}{1436500} a^{9} + \frac{8}{1625} a^{7} - \frac{6}{325} a^{5} + \frac{41}{125} a^{3} + \frac{1}{5} a$, $\frac{1}{19421480000} a^{12} + \frac{12}{23343125} a^{10} + \frac{93}{7182500} a^{8} - \frac{3071}{169000} a^{6} + \frac{2}{8125} a^{4} - \frac{31}{65} a^{2} + \frac{49}{104}$, $\frac{1}{97107400000} a^{13} + \frac{12}{116715625} a^{11} + \frac{93}{35912500} a^{9} - \frac{3071}{845000} a^{7} - \frac{623}{40625} a^{5} - \frac{161}{325} a^{3} + \frac{49}{520} a$, $\frac{1}{44405534645109937000000} a^{14} + \frac{724671602809}{44405534645109937000000} a^{12} + \frac{130600854944967}{106744073666129656250} a^{10} - \frac{45935512303117}{6568866071761825000} a^{8} - \frac{31489814714035167}{1932019432871125000} a^{6} - \frac{3939222883633}{1486168794516250} a^{4} + \frac{4338628420941}{18291308240200} a^{2} - \frac{1216546062231}{9511480284904}$, $\frac{1}{222027673225549685000000} a^{15} + \frac{724671602809}{222027673225549685000000} a^{13} + \frac{130600854944967}{533720368330648281250} a^{11} - \frac{45935512303117}{32844330358809125000} a^{9} + \frac{42818625011777333}{9660097164355625000} a^{7} - \frac{118259899384883}{7430843972581250} a^{5} + \frac{40921244901341}{91456541201000} a^{3} - \frac{2145605269427}{9511480284904} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{9512072}$, which has order $1217545216$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2510752.6365781664 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.2 | $x^{8} + 10 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.8.22.2 | $x^{8} + 10 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ | |
| $13$ | 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $17$ | 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |