Normalized defining polynomial
\( x^{16} - 24 x^{14} - 413 x^{13} + 2537 x^{12} - 16062 x^{11} + 269865 x^{10} - 1530825 x^{9} + 8165048 x^{8} - 65792209 x^{7} + 251387127 x^{6} - 992861822 x^{5} + 5518502641 x^{4} - 11902179377 x^{3} + 44950407942 x^{2} - 211399377596 x + 288557906703 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(68989390528102141148007963042095383049=11^{12}\cdot 89^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $231.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{12} + \frac{1}{3} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{3} a^{8} + \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{96} a^{14} + \frac{1}{24} a^{13} + \frac{41}{96} a^{12} - \frac{7}{32} a^{11} - \frac{3}{16} a^{10} - \frac{11}{96} a^{9} + \frac{43}{96} a^{8} + \frac{1}{12} a^{7} + \frac{19}{96} a^{6} - \frac{29}{96} a^{5} + \frac{1}{16} a^{4} + \frac{13}{96} a^{3} + \frac{43}{96} a^{2} + \frac{1}{4} a + \frac{11}{32}$, $\frac{1}{383068515740269295028210755899793755926760223406528228714717174236048783841216} a^{15} + \frac{535619474042012332577552502419368994694425964047889188472706189611419903551}{383068515740269295028210755899793755926760223406528228714717174236048783841216} a^{14} - \frac{21889796488384175846127300439093028240897825841920649092340667148007940054475}{383068515740269295028210755899793755926760223406528228714717174236048783841216} a^{13} + \frac{21236608611011149792440765557893559501988700506540499772803789047443581595599}{191534257870134647514105377949896877963380111703264114357358587118024391920608} a^{12} - \frac{103440293324483079667863061371102305105709026536861593320766028956079272845129}{383068515740269295028210755899793755926760223406528228714717174236048783841216} a^{11} + \frac{73060042287686698762676342383642862689687528967686191183269914029060825537871}{383068515740269295028210755899793755926760223406528228714717174236048783841216} a^{10} + \frac{25909325183402433822507848497056599580281595444310774760088975012990554555489}{191534257870134647514105377949896877963380111703264114357358587118024391920608} a^{9} + \frac{65750504124932888681402854240880809073970193979724015024267671255065439004529}{383068515740269295028210755899793755926760223406528228714717174236048783841216} a^{8} - \frac{6659708529606677840460250912706898099524023796763150151652096054908647760487}{127689505246756431676070251966597918642253407802176076238239058078682927947072} a^{7} + \frac{42515899061430830162521576651421733018979367404970909445118616607958315336193}{95767128935067323757052688974948438981690055851632057178679293559012195960304} a^{6} - \frac{18399414899734742460855501875479482505378761041326217066375965243849678467241}{383068515740269295028210755899793755926760223406528228714717174236048783841216} a^{5} + \frac{46011385445352723312907644416655563474741645976935728245720841433024488243589}{127689505246756431676070251966597918642253407802176076238239058078682927947072} a^{4} + \frac{43570222947818964495263305449988286582417074209020553257660909071207820154197}{191534257870134647514105377949896877963380111703264114357358587118024391920608} a^{3} + \frac{81313008789989873581015925168626611557596833237022749952784095442196598489985}{383068515740269295028210755899793755926760223406528228714717174236048783841216} a^{2} + \frac{9475502198201497496496659548914548258783045607416025675482670100819433480201}{383068515740269295028210755899793755926760223406528228714717174236048783841216} a + \frac{6563498763358588842364996096496493262232967663620181878352157152756770910025}{127689505246756431676070251966597918642253407802176076238239058078682927947072}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 946035934551 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 4.0.10769.1, 8.0.81756214392809.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | R | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.4.3.4 | $x^{4} + 2403$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 89.4.3.3 | $x^{4} + 267$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 89.8.7.4 | $x^{8} - 64881$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |