Normalized defining polynomial
\( x^{16} - 8 x^{15} + 512 x^{14} - 3440 x^{13} + 106852 x^{12} - 627488 x^{11} + 11853904 x^{10} - 63644240 x^{9} + 761253712 x^{8} - 3866300704 x^{7} + 28876699048 x^{6} - 136494175840 x^{5} + 631426271688 x^{4} - 2392471589872 x^{3} + 6956085731328 x^{2} - 12251031213824 x + 12753433956482 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6896992068684009105950840251291271168=2^{62}\cdot 113^{3}\cdot 1009^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $200.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 113, 1009$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3729616308011739950982580178056001259695559457631672538960456261673470143794166356602481} a^{15} + \frac{116863693722481419975789066841117940175464790501935688544050457606771891205759525699650}{3729616308011739950982580178056001259695559457631672538960456261673470143794166356602481} a^{14} + \frac{1258527458615798359996753384360260427385024337175121876861085127497446687941069177384651}{3729616308011739950982580178056001259695559457631672538960456261673470143794166356602481} a^{13} + \frac{1774721959040688073204821826393886666963662389805898584066309739613640146192962259978154}{3729616308011739950982580178056001259695559457631672538960456261673470143794166356602481} a^{12} + \frac{1617521898182957304325510773762149946120539311033714951203319847731724086423038246892685}{3729616308011739950982580178056001259695559457631672538960456261673470143794166356602481} a^{11} - \frac{1045746480157908233145345254307283231185687934716781407358591885924596154777497697271079}{3729616308011739950982580178056001259695559457631672538960456261673470143794166356602481} a^{10} - \frac{619176120539992385440344670582278854490828705397708049629568295427295131375477871626066}{3729616308011739950982580178056001259695559457631672538960456261673470143794166356602481} a^{9} - \frac{754993309484139168222341682445667662841551484251143561108911143604192459645560887951015}{3729616308011739950982580178056001259695559457631672538960456261673470143794166356602481} a^{8} - \frac{1306952632439970604199580693204583562536010580274130030044355194778361440807445751009254}{3729616308011739950982580178056001259695559457631672538960456261673470143794166356602481} a^{7} + \frac{567705770887207912210989301028780938559394843596951479386694545740588152089547997045335}{3729616308011739950982580178056001259695559457631672538960456261673470143794166356602481} a^{6} + \frac{902632990937903588670086976499154974197429312206176197434122654169167669142306109632105}{3729616308011739950982580178056001259695559457631672538960456261673470143794166356602481} a^{5} - \frac{189941976918477413196381234510123014302020356381982606380101505735057246486051763874265}{3729616308011739950982580178056001259695559457631672538960456261673470143794166356602481} a^{4} - \frac{1027837081859449773405786255506623228764472780092204057429866649115584405431685095909538}{3729616308011739950982580178056001259695559457631672538960456261673470143794166356602481} a^{3} + \frac{495428559860963635114947771949947712803351102620577116761428826597345834903095914026716}{3729616308011739950982580178056001259695559457631672538960456261673470143794166356602481} a^{2} + \frac{21507077899616959066577963445279814906728291965751253432451311580029382413423134485824}{219389194588925879469563539885647132923268203390098384644732721274910008458480373917793} a + \frac{1650788509731383229786688254439572280246719081467363052727354862258602780397245600456749}{3729616308011739950982580178056001259695559457631672538960456261673470143794166356602481}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{1539044}$, which has order $24624704$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32531.4048639 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 59 conjugacy class representatives for t16n1354 are not computed |
| Character table for t16n1354 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.7583301632.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $113$ | 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 113.2.1.2 | $x^{2} + 339$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.4.2.1 | $x^{4} + 2147 x^{2} + 1276900$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 1009 | Data not computed | ||||||