Normalized defining polynomial
\( x^{16} - 3 x^{15} + 11 x^{14} - 11 x^{13} + 8 x^{12} + 45 x^{11} - 57 x^{10} + 47 x^{9} + 172 x^{8} - 377 x^{7} + 615 x^{6} - 631 x^{5} + 563 x^{4} - 358 x^{3} + 192 x^{2} - 64 x + 16 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(689675577587306205184=2^{12}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} + \frac{5}{13} a^{11} + \frac{6}{13} a^{10} - \frac{2}{13} a^{9} - \frac{3}{13} a^{8} + \frac{6}{13} a^{7} - \frac{3}{13} a^{6} - \frac{2}{13} a^{5} + \frac{5}{13} a^{4} - \frac{3}{13} a^{3} - \frac{4}{13} a^{2} - \frac{4}{13} a - \frac{2}{13}$, $\frac{1}{26} a^{13} - \frac{1}{26} a^{12} - \frac{11}{26} a^{11} + \frac{1}{26} a^{10} - \frac{2}{13} a^{9} + \frac{11}{26} a^{8} - \frac{1}{2} a^{7} + \frac{3}{26} a^{6} + \frac{2}{13} a^{5} - \frac{7}{26} a^{4} + \frac{1}{26} a^{3} + \frac{7}{26} a^{2} + \frac{9}{26} a + \frac{6}{13}$, $\frac{1}{676} a^{14} - \frac{7}{676} a^{13} - \frac{17}{676} a^{12} + \frac{293}{676} a^{11} + \frac{12}{169} a^{10} - \frac{123}{676} a^{9} + \frac{243}{676} a^{8} + \frac{295}{676} a^{7} + \frac{64}{169} a^{6} + \frac{279}{676} a^{5} - \frac{69}{676} a^{4} + \frac{89}{676} a^{3} + \frac{275}{676} a^{2} - \frac{75}{338} a + \frac{27}{169}$, $\frac{1}{1177592} a^{15} - \frac{213}{1177592} a^{14} - \frac{551}{1177592} a^{13} - \frac{20177}{1177592} a^{12} - \frac{259241}{588796} a^{11} + \frac{44589}{1177592} a^{10} + \frac{419325}{1177592} a^{9} - \frac{418183}{1177592} a^{8} + \frac{134583}{588796} a^{7} + \frac{225639}{1177592} a^{6} - \frac{8143}{1177592} a^{5} + \frac{395931}{1177592} a^{4} + \frac{418793}{1177592} a^{3} - \frac{76717}{294398} a^{2} - \frac{69949}{294398} a - \frac{71928}{147199}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5147.71826227 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T257):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.4.6565418768.1, 8.2.386201104.1, 8.2.6565418768.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.12.15 | $x^{8} + 2 x^{7} + 2 x^{4} + 12$ | $4$ | $2$ | $12$ | $C_2^2:C_4$ | $[2, 2]^{4}$ | |
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |