Properties

Label 16.0.68879874372...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{8}\cdot 5^{8}\cdot 11^{4}\cdot 19^{6}$
Root discriminant $17.37$
Ramified primes $2, 5, 11, 19$
Class number $1$
Class group Trivial
Galois group 16T919

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![71, -42, 186, -414, 663, -1036, 1476, -1716, 1648, -1326, 912, -540, 272, -112, 36, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 36*x^14 - 112*x^13 + 272*x^12 - 540*x^11 + 912*x^10 - 1326*x^9 + 1648*x^8 - 1716*x^7 + 1476*x^6 - 1036*x^5 + 663*x^4 - 414*x^3 + 186*x^2 - 42*x + 71)
 
gp: K = bnfinit(x^16 - 8*x^15 + 36*x^14 - 112*x^13 + 272*x^12 - 540*x^11 + 912*x^10 - 1326*x^9 + 1648*x^8 - 1716*x^7 + 1476*x^6 - 1036*x^5 + 663*x^4 - 414*x^3 + 186*x^2 - 42*x + 71, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 36 x^{14} - 112 x^{13} + 272 x^{12} - 540 x^{11} + 912 x^{10} - 1326 x^{9} + 1648 x^{8} - 1716 x^{7} + 1476 x^{6} - 1036 x^{5} + 663 x^{4} - 414 x^{3} + 186 x^{2} - 42 x + 71 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(68879874372100000000=2^{8}\cdot 5^{8}\cdot 11^{4}\cdot 19^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $17.37$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{24} a^{12} - \frac{1}{4} a^{11} - \frac{5}{24} a^{9} + \frac{5}{24} a^{8} - \frac{1}{3} a^{7} + \frac{1}{24} a^{6} - \frac{1}{12} a^{5} + \frac{1}{24} a^{4} - \frac{7}{24} a^{3} + \frac{1}{24} a^{2} + \frac{7}{24} a + \frac{1}{24}$, $\frac{1}{24} a^{13} - \frac{5}{24} a^{10} - \frac{1}{24} a^{9} - \frac{1}{12} a^{8} + \frac{1}{24} a^{7} + \frac{1}{6} a^{6} + \frac{1}{24} a^{5} - \frac{1}{24} a^{4} - \frac{5}{24} a^{3} - \frac{11}{24} a^{2} - \frac{5}{24} a + \frac{1}{4}$, $\frac{1}{30216} a^{14} - \frac{7}{30216} a^{13} + \frac{17}{2518} a^{12} - \frac{1133}{30216} a^{11} - \frac{2095}{15108} a^{10} + \frac{953}{30216} a^{9} - \frac{2067}{10072} a^{8} + \frac{2303}{10072} a^{7} + \frac{4139}{10072} a^{6} - \frac{1126}{3777} a^{5} + \frac{5647}{15108} a^{4} - \frac{625}{2518} a^{3} - \frac{135}{1259} a^{2} - \frac{499}{30216} a + \frac{2181}{5036}$, $\frac{1}{63785976} a^{15} + \frac{131}{7973247} a^{14} - \frac{609799}{31892988} a^{13} - \frac{301831}{15946494} a^{12} + \frac{2422843}{21261992} a^{11} - \frac{1523177}{15946494} a^{10} - \frac{4397903}{31892988} a^{9} + \frac{38093}{63785976} a^{8} - \frac{21639221}{63785976} a^{7} + \frac{2884507}{7973247} a^{6} + \frac{24469379}{63785976} a^{5} - \frac{618157}{15946494} a^{4} + \frac{9222601}{31892988} a^{3} + \frac{480347}{21261992} a^{2} - \frac{1243579}{63785976} a - \frac{11524091}{63785976}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1497.01030835 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T919:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 65 conjugacy class representatives for t16n919 are not computed
Character table for t16n919 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.5225.1, 4.2.275.1, 4.2.475.1, 8.0.8299390000.1, 8.4.8299390000.1, 8.4.27300625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.8.8.2$x^{8} + 2 x^{7} + 8 x^{2} + 48$$2$$4$$8$$C_2^2:C_4$$[2, 2]^{4}$
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.4.3.1$x^{4} + 76$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
19.4.3.1$x^{4} + 76$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$