Properties

Label 16.0.68853760000...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{24}\cdot 5^{12}\cdot 41^{2}$
Root discriminant $15.04$
Ramified primes $2, 5, 41$
Class number $1$
Class group Trivial
Galois group $C_2^4.C_2^3$ (as 16T208)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -8, 28, -42, 23, 32, -61, 44, 18, -48, 61, -40, 33, -16, 7, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 + 7*x^14 - 16*x^13 + 33*x^12 - 40*x^11 + 61*x^10 - 48*x^9 + 18*x^8 + 44*x^7 - 61*x^6 + 32*x^5 + 23*x^4 - 42*x^3 + 28*x^2 - 8*x + 1)
 
gp: K = bnfinit(x^16 - 2*x^15 + 7*x^14 - 16*x^13 + 33*x^12 - 40*x^11 + 61*x^10 - 48*x^9 + 18*x^8 + 44*x^7 - 61*x^6 + 32*x^5 + 23*x^4 - 42*x^3 + 28*x^2 - 8*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} + 7 x^{14} - 16 x^{13} + 33 x^{12} - 40 x^{11} + 61 x^{10} - 48 x^{9} + 18 x^{8} + 44 x^{7} - 61 x^{6} + 32 x^{5} + 23 x^{4} - 42 x^{3} + 28 x^{2} - 8 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6885376000000000000=2^{24}\cdot 5^{12}\cdot 41^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $15.04$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{62} a^{14} - \frac{3}{31} a^{13} + \frac{5}{31} a^{12} + \frac{4}{31} a^{11} + \frac{4}{31} a^{10} + \frac{4}{31} a^{9} - \frac{15}{62} a^{8} + \frac{15}{31} a^{7} + \frac{27}{62} a^{6} - \frac{6}{31} a^{5} + \frac{9}{62} a^{4} - \frac{11}{62} a^{2} + \frac{1}{31} a - \frac{14}{31}$, $\frac{1}{39203158} a^{15} + \frac{11787}{39203158} a^{14} - \frac{1340133}{19601579} a^{13} + \frac{7044857}{39203158} a^{12} + \frac{7236045}{19601579} a^{11} + \frac{1559604}{19601579} a^{10} + \frac{3574823}{39203158} a^{9} + \frac{3987303}{39203158} a^{8} + \frac{9316351}{39203158} a^{7} - \frac{6180285}{19601579} a^{6} + \frac{17083147}{39203158} a^{5} + \frac{453294}{19601579} a^{4} + \frac{4273091}{39203158} a^{3} + \frac{87217}{179831} a^{2} + \frac{6646616}{19601579} a - \frac{9564391}{39203158}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{10280062}{19601579} a^{15} + \frac{45253545}{39203158} a^{14} - \frac{73027253}{19601579} a^{13} + \frac{345042521}{39203158} a^{12} - \frac{353210605}{19601579} a^{11} + \frac{431082606}{19601579} a^{10} - \frac{619751898}{19601579} a^{9} + \frac{1030764687}{39203158} a^{8} - \frac{141918321}{19601579} a^{7} - \frac{543390600}{19601579} a^{6} + \frac{689767430}{19601579} a^{5} - \frac{323928526}{19601579} a^{4} - \frac{345060010}{19601579} a^{3} + \frac{4367841}{179831} a^{2} - \frac{279025816}{19601579} a + \frac{86389399}{39203158} \) (order $10$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2583.75001658 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4.C_2^3$ (as 16T208):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 32 conjugacy class representatives for $C_2^4.C_2^3$
Character table for $C_2^4.C_2^3$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), 4.0.8000.2, \(\Q(\zeta_{5})\), \(\Q(\sqrt{2}, \sqrt{5})\), 8.4.2624000000.4, 8.0.64000000.2, 8.4.104960000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.12.1$x^{8} + 6 x^{6} + 8 x^{5} + 16$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
2.8.12.1$x^{8} + 6 x^{6} + 8 x^{5} + 16$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$41$$\Q_{41}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{41}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{41}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{41}$$x + 6$$1$$1$$0$Trivial$[\ ]$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.1.1$x^{2} - 41$$2$$1$$1$$C_2$$[\ ]_{2}$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.1.1$x^{2} - 41$$2$$1$$1$$C_2$$[\ ]_{2}$
41.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$