Normalized defining polynomial
\( x^{16} - 6 x^{15} + 22 x^{14} - 56 x^{13} + 110 x^{12} - 174 x^{11} + 232 x^{10} - 266 x^{9} + 259 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(6884340550074368\)
\(\medspace = 2^{24}\cdot 17^{7}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.77\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}17^{7/8}\approx 33.74331915933294$ | ||
Ramified primes: |
\(2\), \(17\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Aut(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{12}-\frac{1}{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{2}$, $\frac{1}{298}a^{15}+\frac{31}{298}a^{14}-\frac{23}{298}a^{13}-\frac{13}{298}a^{12}-\frac{73}{298}a^{11}-\frac{22}{149}a^{10}-\frac{55}{298}a^{9}-\frac{33}{149}a^{8}-\frac{97}{298}a^{7}-\frac{33}{149}a^{6}-\frac{95}{298}a^{5}-\frac{59}{149}a^{4}+\frac{45}{149}a^{3}-\frac{77}{298}a^{2}-\frac{12}{149}a-\frac{145}{298}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -\frac{413}{2} a^{15} + 1123 a^{14} - 3912 a^{13} + \frac{18731}{2} a^{12} - \frac{34901}{2} a^{11} + \frac{52239}{2} a^{10} - \frac{66437}{2} a^{9} + 36242 a^{8} - \frac{66179}{2} a^{7} + \frac{46169}{2} a^{6} - \frac{20241}{2} a^{5} + 478 a^{4} + 3178 a^{3} - \frac{4703}{2} a^{2} - \frac{163}{2} a + \frac{737}{2} \)
(order $4$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{51471}{298}a^{15}-\frac{280011}{298}a^{14}+\frac{487812}{149}a^{13}-\frac{1168142}{149}a^{12}+\frac{4354177}{298}a^{11}-\frac{3259486}{149}a^{10}+\frac{8292839}{298}a^{9}-\frac{9050295}{298}a^{8}+\frac{8266525}{298}a^{7}-\frac{2885924}{149}a^{6}+\frac{2536117}{298}a^{5}-\frac{126541}{298}a^{4}-\frac{394860}{149}a^{3}+\frac{586001}{298}a^{2}+\frac{20021}{298}a-\frac{91967}{298}$, $\frac{35019}{149}a^{15}-\frac{190447}{149}a^{14}+\frac{1326959}{298}a^{13}-\frac{1588541}{149}a^{12}+\frac{5920527}{298}a^{11}-\frac{8863021}{298}a^{10}+\frac{5636897}{149}a^{9}-\frac{6151133}{149}a^{8}+\frac{11235165}{298}a^{7}-\frac{7842547}{298}a^{6}+\frac{1721911}{149}a^{5}-\frac{84806}{149}a^{4}-\frac{1074911}{298}a^{3}+\frac{796981}{298}a^{2}+\frac{27373}{298}a-\frac{62415}{149}$, $\frac{35235}{298}a^{15}-\frac{191797}{298}a^{14}+\frac{334210}{149}a^{13}-\frac{1601183}{298}a^{12}+\frac{2984949}{298}a^{11}-\frac{2235221}{149}a^{10}+\frac{5688491}{298}a^{9}-\frac{3105119}{149}a^{8}+\frac{5675079}{298}a^{7}-\frac{1983000}{149}a^{6}+\frac{1746687}{298}a^{5}-\frac{45909}{149}a^{4}-\frac{269773}{149}a^{3}+\frac{402197}{298}a^{2}+\frac{12749}{298}a-\frac{63041}{298}$, $\frac{24039}{298}a^{15}-\frac{65381}{149}a^{14}+\frac{455535}{298}a^{13}-\frac{545367}{149}a^{12}+\frac{1016292}{149}a^{11}-\frac{1521496}{149}a^{10}+\frac{1935476}{149}a^{9}-\frac{2112384}{149}a^{8}+\frac{1929509}{149}a^{7}-\frac{1347418}{149}a^{6}+\frac{592433}{149}a^{5}-\frac{30366}{149}a^{4}-\frac{367255}{298}a^{3}+\frac{136496}{149}a^{2}+\frac{9379}{298}a-\frac{21356}{149}$, $\frac{27396}{149}a^{15}-\frac{149024}{149}a^{14}+\frac{1038407}{298}a^{13}-\frac{2486439}{298}a^{12}+\frac{4633691}{298}a^{11}-\frac{3468436}{149}a^{10}+\frac{8823745}{298}a^{9}-\frac{4814360}{149}a^{8}+\frac{8793539}{298}a^{7}-\frac{3068974}{149}a^{6}+\frac{2694591}{298}a^{5}-\frac{65733}{149}a^{4}-\frac{842321}{298}a^{3}+\frac{312354}{149}a^{2}+\frac{10463}{149}a-\frac{97755}{298}$, $\frac{667}{298}a^{15}-\frac{3759}{298}a^{14}+\frac{13267}{298}a^{13}-\frac{16181}{149}a^{12}+\frac{30561}{149}a^{11}-\frac{92971}{298}a^{10}+\frac{119765}{298}a^{9}-\frac{66413}{149}a^{8}+\frac{61893}{149}a^{7}-\frac{89765}{298}a^{6}+\frac{43021}{298}a^{5}-\frac{3146}{149}a^{4}-\frac{9553}{298}a^{3}+\frac{4344}{149}a^{2}-\frac{256}{149}a-\frac{603}{149}$, $\frac{63209}{298}a^{15}-\frac{343763}{298}a^{14}+\frac{1197499}{298}a^{13}-\frac{2866891}{298}a^{12}+\frac{2670887}{149}a^{11}-\frac{7995451}{298}a^{10}+\frac{5084239}{149}a^{9}-\frac{5547018}{149}a^{8}+\frac{5064474}{149}a^{7}-\frac{7066417}{298}a^{6}+\frac{1549001}{149}a^{5}-\frac{73318}{149}a^{4}-\frac{972533}{298}a^{3}+\frac{359682}{149}a^{2}+\frac{25283}{298}a-\frac{112959}{298}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 23.5886655901 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 23.5886655901 \cdot 1}{4\cdot\sqrt{6884340550074368}}\cr\approx \mathstrut & 0.172643867485 \end{aligned}\]
Galois group
$C_8\wr C_2$ (as 16T289):
A solvable group of order 128 |
The 44 conjugacy class representatives for $C_8\wr C_2$ |
Character table for $C_8\wr C_2$ |
Intermediate fields
\(\Q(\sqrt{-1}) \), 4.0.272.1, 8.0.1257728.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $16$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }^{2}$ | $16$ | $16$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | $16$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}$ | $16$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{8}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| Deg $16$ | $4$ | $4$ | $24$ | |||
\(17\)
| 17.4.0.1 | $x^{4} + 7 x^{2} + 10 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
17.4.0.1 | $x^{4} + 7 x^{2} + 10 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
17.8.7.2 | $x^{8} + 136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |