Properties

Label 16.0.68797071360...0000.5
Degree $16$
Signature $[0, 8]$
Discriminant $2^{32}\cdot 3^{8}\cdot 5^{12}$
Root discriminant $23.17$
Ramified primes $2, 3, 5$
Class number $8$
Class group $[2, 4]$
Galois group $C_4\times C_2^2$ (as 16T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 12, 0, 125, 0, 212, 0, 264, 0, 128, 0, 45, 0, 8, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 8*x^14 + 45*x^12 + 128*x^10 + 264*x^8 + 212*x^6 + 125*x^4 + 12*x^2 + 1)
 
gp: K = bnfinit(x^16 + 8*x^14 + 45*x^12 + 128*x^10 + 264*x^8 + 212*x^6 + 125*x^4 + 12*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{16} + 8 x^{14} + 45 x^{12} + 128 x^{10} + 264 x^{8} + 212 x^{6} + 125 x^{4} + 12 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6879707136000000000000=2^{32}\cdot 3^{8}\cdot 5^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $23.17$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(120=2^{3}\cdot 3\cdot 5\)
Dirichlet character group:    $\lbrace$$\chi_{120}(1,·)$, $\chi_{120}(67,·)$, $\chi_{120}(7,·)$, $\chi_{120}(43,·)$, $\chi_{120}(83,·)$, $\chi_{120}(23,·)$, $\chi_{120}(89,·)$, $\chi_{120}(29,·)$, $\chi_{120}(101,·)$, $\chi_{120}(103,·)$, $\chi_{120}(41,·)$, $\chi_{120}(107,·)$, $\chi_{120}(109,·)$, $\chi_{120}(47,·)$, $\chi_{120}(49,·)$, $\chi_{120}(61,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{19} a^{10} + \frac{8}{19} a^{8} + \frac{7}{19} a^{6} + \frac{7}{19} a^{4} - \frac{1}{19} a^{2} - \frac{8}{19}$, $\frac{1}{19} a^{11} + \frac{8}{19} a^{9} + \frac{7}{19} a^{7} + \frac{7}{19} a^{5} - \frac{1}{19} a^{3} - \frac{8}{19} a$, $\frac{1}{76} a^{12} + \frac{2}{19} a^{6} - \frac{31}{76}$, $\frac{1}{76} a^{13} + \frac{2}{19} a^{7} - \frac{31}{76} a$, $\frac{1}{836} a^{14} + \frac{1}{209} a^{12} - \frac{1}{209} a^{10} - \frac{63}{209} a^{8} - \frac{56}{209} a^{6} - \frac{64}{209} a^{4} + \frac{49}{836} a^{2} + \frac{53}{209}$, $\frac{1}{836} a^{15} + \frac{1}{209} a^{13} - \frac{1}{209} a^{11} - \frac{63}{209} a^{9} - \frac{56}{209} a^{7} - \frac{64}{209} a^{5} + \frac{49}{836} a^{3} + \frac{53}{209} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}$, which has order $8$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{85}{836} a^{14} - \frac{335}{418} a^{12} - \frac{938}{209} a^{10} - \frac{2620}{209} a^{8} - \frac{5360}{209} a^{6} - \frac{4020}{209} a^{4} - \frac{10105}{836} a^{2} - \frac{67}{418} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 7114.13535725 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2\times C_4$ (as 16T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_4\times C_2^2$
Character table for $C_4\times C_2^2$

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{-3})\), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\sqrt{-3}, \sqrt{10})\), \(\Q(\sqrt{5}, \sqrt{-6})\), \(\Q(\sqrt{-6}, \sqrt{10})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{-15})\), 4.4.8000.1, 4.0.72000.2, 4.0.18000.1, \(\Q(\zeta_{20})^+\), 8.0.207360000.1, 8.0.5184000000.4, 8.0.324000000.2, 8.0.82944000000.3, 8.0.82944000000.2, \(\Q(\zeta_{40})^+\), 8.0.82944000000.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.16.3$x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$$4$$2$$16$$C_4\times C_2$$[2, 3]^{2}$
2.8.16.3$x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$$4$$2$$16$$C_4\times C_2$$[2, 3]^{2}$
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$