Normalized defining polynomial
\( x^{16} + 8 x^{14} + 45 x^{12} + 128 x^{10} + 264 x^{8} + 212 x^{6} + 125 x^{4} + 12 x^{2} + 1 \)
Invariants
Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
Discriminant: | \(6879707136000000000000=2^{32}\cdot 3^{8}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
Root discriminant: | $23.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(120=2^{3}\cdot 3\cdot 5\) | ||
Dirichlet character group: | $\lbrace$$\chi_{120}(1,·)$, $\chi_{120}(67,·)$, $\chi_{120}(7,·)$, $\chi_{120}(43,·)$, $\chi_{120}(83,·)$, $\chi_{120}(23,·)$, $\chi_{120}(89,·)$, $\chi_{120}(29,·)$, $\chi_{120}(101,·)$, $\chi_{120}(103,·)$, $\chi_{120}(41,·)$, $\chi_{120}(107,·)$, $\chi_{120}(109,·)$, $\chi_{120}(47,·)$, $\chi_{120}(49,·)$, $\chi_{120}(61,·)$$\rbrace$ | ||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{19} a^{10} + \frac{8}{19} a^{8} + \frac{7}{19} a^{6} + \frac{7}{19} a^{4} - \frac{1}{19} a^{2} - \frac{8}{19}$, $\frac{1}{19} a^{11} + \frac{8}{19} a^{9} + \frac{7}{19} a^{7} + \frac{7}{19} a^{5} - \frac{1}{19} a^{3} - \frac{8}{19} a$, $\frac{1}{76} a^{12} + \frac{2}{19} a^{6} - \frac{31}{76}$, $\frac{1}{76} a^{13} + \frac{2}{19} a^{7} - \frac{31}{76} a$, $\frac{1}{836} a^{14} + \frac{1}{209} a^{12} - \frac{1}{209} a^{10} - \frac{63}{209} a^{8} - \frac{56}{209} a^{6} - \frac{64}{209} a^{4} + \frac{49}{836} a^{2} + \frac{53}{209}$, $\frac{1}{836} a^{15} + \frac{1}{209} a^{13} - \frac{1}{209} a^{11} - \frac{63}{209} a^{9} - \frac{56}{209} a^{7} - \frac{64}{209} a^{5} + \frac{49}{836} a^{3} + \frac{53}{209} a$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$
Unit group
Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
Torsion generator: | \( -\frac{85}{836} a^{14} - \frac{335}{418} a^{12} - \frac{938}{209} a^{10} - \frac{2620}{209} a^{8} - \frac{5360}{209} a^{6} - \frac{4020}{209} a^{4} - \frac{10105}{836} a^{2} - \frac{67}{418} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
Regulator: | \( 7114.13535725 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
An abelian group of order 16 |
The 16 conjugacy class representatives for $C_4\times C_2^2$ |
Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ |
2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ | |
$3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
$5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |