Properties

Label 16.0.687...000.4
Degree $16$
Signature $[0, 8]$
Discriminant $6.880\times 10^{21}$
Root discriminant \(23.17\)
Ramified primes $2,3,5$
Class number $4$ (GRH)
Class group [2, 2] (GRH)
Galois group $C_4\times C_2^2$ (as 16T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 4*x^14 + 15*x^12 + 56*x^10 + 209*x^8 + 56*x^6 + 15*x^4 + 4*x^2 + 1)
 
gp: K = bnfinit(y^16 + 4*y^14 + 15*y^12 + 56*y^10 + 209*y^8 + 56*y^6 + 15*y^4 + 4*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 + 4*x^14 + 15*x^12 + 56*x^10 + 209*x^8 + 56*x^6 + 15*x^4 + 4*x^2 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 4*x^14 + 15*x^12 + 56*x^10 + 209*x^8 + 56*x^6 + 15*x^4 + 4*x^2 + 1)
 

\( x^{16} + 4x^{14} + 15x^{12} + 56x^{10} + 209x^{8} + 56x^{6} + 15x^{4} + 4x^{2} + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(6879707136000000000000\) \(\medspace = 2^{32}\cdot 3^{8}\cdot 5^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(23.17\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2}3^{1/2}5^{3/4}\approx 23.165843705765383$
Ramified primes:   \(2\), \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $16$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(120=2^{3}\cdot 3\cdot 5\)
Dirichlet character group:    $\lbrace$$\chi_{120}(1,·)$, $\chi_{120}(71,·)$, $\chi_{120}(73,·)$, $\chi_{120}(11,·)$, $\chi_{120}(13,·)$, $\chi_{120}(83,·)$, $\chi_{120}(23,·)$, $\chi_{120}(97,·)$, $\chi_{120}(37,·)$, $\chi_{120}(107,·)$, $\chi_{120}(109,·)$, $\chi_{120}(47,·)$, $\chi_{120}(49,·)$, $\chi_{120}(119,·)$, $\chi_{120}(59,·)$, $\chi_{120}(61,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{128}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{209}a^{10}+\frac{56}{209}$, $\frac{1}{209}a^{11}+\frac{56}{209}a$, $\frac{1}{209}a^{12}+\frac{56}{209}a^{2}$, $\frac{1}{209}a^{13}+\frac{56}{209}a^{3}$, $\frac{1}{209}a^{14}+\frac{56}{209}a^{4}$, $\frac{1}{209}a^{15}+\frac{56}{209}a^{5}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{1}{209} a^{12} - \frac{780}{209} a^{2} \)  (order $10$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{60}{209}a^{14}+\frac{224}{209}a^{12}+\frac{840}{209}a^{10}+15a^{8}+56a^{6}+\frac{225}{209}a^{4}+\frac{840}{209}a^{2}+\frac{224}{209}$, $\frac{1}{209}a^{11}-\frac{780}{209}a$, $\frac{56}{209}a^{14}+\frac{3}{209}a^{13}+\frac{224}{209}a^{12}+\frac{840}{209}a^{10}+15a^{8}+56a^{6}+\frac{3136}{209}a^{4}-\frac{2131}{209}a^{3}+\frac{840}{209}a^{2}+\frac{224}{209}$, $\frac{1}{209}a^{12}-\frac{1}{209}a^{11}-\frac{780}{209}a^{2}+\frac{571}{209}a-1$, $\frac{56}{209}a^{15}-\frac{16}{209}a^{14}+\frac{225}{209}a^{13}-\frac{61}{209}a^{12}+\frac{841}{209}a^{11}-\frac{225}{209}a^{10}+15a^{9}-4a^{8}+56a^{7}-15a^{6}+\frac{3136}{209}a^{5}-\frac{60}{209}a^{4}+\frac{60}{209}a^{3}+\frac{555}{209}a^{2}-\frac{347}{209}a+\frac{149}{209}$, $\frac{4}{209}a^{15}-\frac{56}{209}a^{14}-\frac{224}{209}a^{12}-\frac{840}{209}a^{10}-15a^{8}-56a^{6}-\frac{2911}{209}a^{5}-\frac{3136}{209}a^{4}-\frac{840}{209}a^{2}-a-\frac{224}{209}$, $\frac{97}{209}a^{14}+\frac{3}{209}a^{13}+\frac{388}{209}a^{12}+\frac{1455}{209}a^{10}+26a^{8}+97a^{6}+\frac{5432}{209}a^{4}-\frac{2131}{209}a^{3}+\frac{1455}{209}a^{2}+\frac{388}{209}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 15197.4244561 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 15197.4244561 \cdot 4}{10\cdot\sqrt{6879707136000000000000}}\cr\approx \mathstrut & 0.178026213970 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 + 4*x^14 + 15*x^12 + 56*x^10 + 209*x^8 + 56*x^6 + 15*x^4 + 4*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 + 4*x^14 + 15*x^12 + 56*x^10 + 209*x^8 + 56*x^6 + 15*x^4 + 4*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 + 4*x^14 + 15*x^12 + 56*x^10 + 209*x^8 + 56*x^6 + 15*x^4 + 4*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 4*x^14 + 15*x^12 + 56*x^10 + 209*x^8 + 56*x^6 + 15*x^4 + 4*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2\times C_4$ (as 16T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_4\times C_2^2$
Character table for $C_4\times C_2^2$

Intermediate fields

\(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{3}, \sqrt{10})\), \(\Q(\sqrt{5}, \sqrt{6})\), \(\Q(\sqrt{6}, \sqrt{10})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{15})\), 4.0.8000.2, 4.0.72000.2, 4.0.18000.1, \(\Q(\zeta_{5})\), 8.8.3317760000.1, 8.0.82944000000.1, 8.0.324000000.3, 8.0.82944000000.4, 8.0.5184000000.6, 8.0.64000000.2, 8.0.82944000000.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.4.0.1}{4} }^{4}$ ${\href{/padicField/11.2.0.1}{2} }^{8}$ ${\href{/padicField/13.4.0.1}{4} }^{4}$ ${\href{/padicField/17.4.0.1}{4} }^{4}$ ${\href{/padicField/19.2.0.1}{2} }^{8}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.2.0.1}{2} }^{8}$ ${\href{/padicField/31.2.0.1}{2} }^{8}$ ${\href{/padicField/37.4.0.1}{4} }^{4}$ ${\href{/padicField/41.2.0.1}{2} }^{8}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.4.0.1}{4} }^{4}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $16$$4$$4$$32$
\(3\) Copy content Toggle raw display 3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 4 x^{7} + 16 x^{6} + 36 x^{5} + 94 x^{4} + 116 x^{3} + 144 x^{2} + 36 x + 229$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(5\) Copy content Toggle raw display 5.8.6.1$x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 674 x^{4} + 784 x^{3} + 776 x^{2} + 928 x + 721$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 674 x^{4} + 784 x^{3} + 776 x^{2} + 928 x + 721$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$